Application Specific Microstructure Development in Microalloyed Bainitic Hot Strip

Article Preview

Abstract:

During the hot rolling of bainitic steels, time and temperature must be controlled within narrow limits to avoid undesirable ferritic or martensitic phase fractions. In order to design a reliable process window for the production of bainitic steels, the effects of the different process parameters on the phase transformation and the final properties of a microalloyed and a non-microalloyed steel were investigated. Thermomechanical tests with the possibility of producing secondary samples were conducted to analyze the influence on the mechanical properties strength and toughness. Transmission electron microscopy (TEM) and electron probe micro analysis (EPMA) were used to investigate the origin of the differing properties. In particular, it has been found that thermomechanical rolling of the microalloyed steel leads to an improvement in strength. This is partly due to the transformation kinetics and partly to strain-induced precipitations. Further, the hardening behavior is affected by the secondary phase within the bainitic matrix configured through the cooling strategy. Coarse Martensite/Austenite (MA) structures reduce toughness, whereas finely dispersed MA islands increase the hardening potential. Furthermore, the results from the material experiments were used to develop a rate model in combination with a nucleation model to predict the kinetics of the phase transformation and the shape of the bainitic microstructure.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] V. C. Igwemezie, P. C. Agu, Development of Bainitic Steels for Engineering Applications, Int. J. Eng. Res. Tech. 2 (2014) 2698-2711.

Google Scholar

[2] H. K. D. H. Bhadeshia, The bainite transformation: unresolved issues, Mat. Sci. Eng. A (1999) 58-66.

Google Scholar

[3] R. F. Hehemann, The bainite reaction, Am. Soc. Met. (1970) 397-432.

Google Scholar

[4] A. Matsuzaki, H. K. D. H. Bhadeshia, Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels, Mat. Sci. Tech. 5 (2013) 518-522.

DOI: 10.1179/026708399101506210

Google Scholar

[5] P. Shipway, H. K. D. H. Bhadeshia, Mechanical stabilisation of bainite, Mat. Sci. Tech. 11 (1995) 1116-1128.

Google Scholar

[6] S. J. Lee, J. S. Park, Y. K. Lee, Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel, Scr. Mat. 1 (2008) 87-90.

DOI: 10.1016/j.scriptamat.2008.02.036

Google Scholar

[7] C. Y. Huang, J. R. Yang, S. C. Wang, Effect of Compressive Deformation on the Transformation Behavior of an Ultra-Low-Carbon Bainitic Steel, Mat. Trans. 8 (1993) 658-668.

DOI: 10.2320/matertrans1989.34.658

Google Scholar

[8] F. G. Caballero, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, H. Roelofs, S. Hasler, G. Mastrogiacomo, The microstructure of continuously cooled tough bainitic steel. International Conference Super-High Strength Steels. Milano (2010).

DOI: 10.1179/1743284710y.0000000047

Google Scholar

[9] J. B. Leblond, J. Devaux, A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite tgrain size, Acta metall. mater. 1 (1984) 137-146.

DOI: 10.1016/0001-6160(84)90211-6

Google Scholar

[10] M. Azuma, M. Fujita, M. Takahashi, T. Senuma, D. Quidort, T. Lung, Modelling Upper and Lower Bainite Transformation in Steels, ISIJ International. 2 (2005) 221-228.

DOI: 10.2355/isijinternational.45.221

Google Scholar

[11] D. Hömberg, A numerical simulataion of the jominy end-quench test, Acta Mat. 11 (1996) 4375-4385.

DOI: 10.1016/1359-6454(96)00084-5

Google Scholar

[12] P. Suwanpinij, N. Togobytska, U. Prahl, W. Weiss, D. Hömberg, W. Bleck, Numerical Cooling Strategy Design for Hot Rolled Dual Phase Steel, Ste. Res. Int. 11 (2010) 1001-1009.

DOI: 10.1002/srin.201000091

Google Scholar

[13] P. Suwanpinij, X. Li, U. Prahl, W. Bleck, Modeling Bainite Transformation and Retained Austenite in Hot Rolled TRIP Steel by Instantaneous Carbon Enrichment, steel research int. 12 (2017) 1700122.

DOI: 10.1002/srin.201700122

Google Scholar

[14] M. Takahashi, H. K. D. H. Bhadeshia, A Model for the Microstructure of Some Advanced Bainitic Steels, Mat. Trans. 8 (1991) 689-696.

DOI: 10.2320/matertrans1989.32.689

Google Scholar

[15] M. Menzel, Anwendungsspezifische Gefügeentwicklung in mikrolegiertem bainitischem Warmband. RWTH Aachen. Aachen (not published yet).

Google Scholar

[16] R. Barbosa, F. Boratto, S. Yue, J. J. Jonas, The influence of chemical composition on the recrystallisation behaviour of microalloyed steels, International symposium on processing, microstructure and properties of HSLA steel (1988) 51-61.

Google Scholar

[17] M. P. Phaniraj, Y.-M. Shin, W.-S. Jung, M.-H. Kim, I.-S. Choi, Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides, Nano convergence. 1 (2017) 16.

DOI: 10.1186/s40580-017-0110-5

Google Scholar

[18] Z. Wang, X. Mao, Z. Yang, X. Sun, Q. Yong, Z. Li, Y. Weng, Strain-induced precipitation in a Ti micro-alloyed HSLA steel, Materials Science and Engineering: A (2011) 459-467.

DOI: 10.1016/j.msea.2011.09.062

Google Scholar

[19] H. K. D. H. Bhadeshia, Atomic Mechanism of the Bainite Transformation, HTM. 6 (2017) 340-345.

Google Scholar

[20] H. F. Lan, L. X. Du, X. H. Liu, Microstructure and Mechanical Properties of a Low Carbon Bainitic Steel, steel research int. 4 (2013) 352-361.

DOI: 10.1002/srin.201200186

Google Scholar

[21] S. Chatterjee, H.-S. Wang, J. R. Yang, H. K. D. H. Bhadeshia, Mechanical stabilisation of austenite, Mat. Sci. Tech. 6 (2013) 641-644.

Google Scholar