Modeling of Microstructural Evolution in the Hot Rolling Process of Fe-16Cr-4Mn-4Ni-0.05C-0.17N Austenitic Stainless Steel

Article Preview

Abstract:

The understanding of the softening behaviour during the hot rolling process is required to optimize the hot rolling schedule. Therefore, the microstructural evolution in the hot rolling of austenitic stainless steel was simulated. In this work, kinetics of grain growth was investigated by means of compression tests using the Gleeble HDS V40 and described by appropriate kinetic equations based on the obtained experimental results. Moreover, numerical simulation was performed using the Simufact.forming software. The results of the numerical simulation were further validated by experimental data, which were obtained from the labour continuous hot rolling of the austenitic stainless steel.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura; J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. In: Progress in Materials Science 60 (2014), S. 130–207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[2] A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part II. Post-deformation Recrystallization. In: Metallurgical and Materials Transactions A 39 (2008), Nr. 6, S. 1371–1381.

DOI: 10.1007/s11661-008-9513-6

Google Scholar

[3] M.J. Luton, C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation. In: Acta Metallurgica 17 (1969), Nr. 8, S. 1033–1043.

DOI: 10.1016/0001-6160(69)90049-2

Google Scholar

[4] R. Kawalla, Einfluss der Umformbedingungen auf Rekristallisations- und Ausscheidungsverhalten nichtrostender Mo-haltiger austenitischer Stähle, VDI-Verl., Düsseldorf (1990).

Google Scholar

[5] F. Bubeck, Charakterisierung und Modellierung der Gefügeentwicklung bei der Warmumformung von Kupferwerkstoffen. Dissertation, Technische Universität Bergakademie Freiberg, Freiberg Sachsen (2007).

Google Scholar

[6] X. Yaowen, D. Tang, S. Yong, P. Xiaogang, Prediction model for the austenite grain growth in a hot rolled dual phase steel. In: Materials & Design 36 (2012), S. 275–278.

DOI: 10.1016/j.matdes.2011.11.009

Google Scholar

[7] C. M. Sellars, J. A. Whiteman, Recrystallization and grain growth in hot rolling. In: Metal Science 13 (2013), 3-4, S. 187–194.

DOI: 10.1179/msc.1979.13.3-4.187

Google Scholar

[8] S. Cho, Y. Yoo, Hot rolling simulations of austenitic stainless steel. In: Journal of Materials Science (2001).

Google Scholar

[9] Y. Meng, J. Lin, A. Yanagida, J. Yanagimoto, Modeling Static and Dynamic Kinetics of Microstructural Evolution in Hot Deformation of Fe-0.15C-0.2Si-1.4Mn-0.03Nb Alloy. In: steel research international 57 (2017), S. 1700036.

DOI: 10.1002/srin.201700036

Google Scholar

[10] A. Nam, M. Turdimatov, R. Kawalla, U. Prahl, Inter-pass softening behaviour of Fe-16Cr-xMn-4Ni-0.05C-0.17N. In: Advanced Engineering Materials (2018 (in revision)).

DOI: 10.1002/adem.201800692

Google Scholar

[11] A. Nam, M. Turdimatov, R. Kawalla, U. Prahl, The kinetics of dynamic recrystallization of Fe-16Cr-xMn-4Ni-0.05C-0.17N. In: steel research international (2018 (in revision)).

DOI: 10.1002/srin.201800309

Google Scholar