Recent Developments of Martensitic Heat-Resistant Steels for Ultra-Supercritical Power Plants

Article Preview

Abstract:

This paper provides a comprehensive review of developments and progress made in martensitic heat-resistant steels, especially, with the emphasis on strengthening mechanisms used in elevated temperatures. We desired to elucidate the correlation between high creep resistance at elevated temperatures and thermal stability of nano-sized particles precipitated from martensite matrix. Finally, future prospective strengthening methods for martensitic heat-resistant steels were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-14

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sanhueza JP, Rojas D, Prat O, Garcia J, Espinoza R, Montalba C, Melendrez MF. MCP 2017;200:342.

Google Scholar

[2] Srinivasarao P, Reddy PR, Reddy KKV. International Journal of Scientific and Research Publications 2012;2:1.

Google Scholar

[3] Hald J. Int. J. Pressure Vessels Piping 2008;85:30.

Google Scholar

[4] Wang H, Yan W, van Zwaag S, Shi Q, Wang W, Yang K, Shan Y. AcMat 2017;134:143.

Google Scholar

[5] Li J, Jiang B, Zhang C, Zhou L, Liu Y. Materials Science and Engineering: A 2016;677:274.

Google Scholar

[6] Li J, Zhang C, Liu Y. Materials Science and Engineering: A 2016;670:256.

Google Scholar

[7] Dalmau A, Richard C, Igual – Muñoz A. Tribology International 2018;121:167.

Google Scholar

[8] Kim M-Y, Hong S-M, Lee K-H, Jung W-S, Lee Y-S, Lee Y-K, Shim J-H. Mater. Charact. 2017;129:40.

Google Scholar

[9] Rojas D, Garcia J, Prat O, Carrasco C, Sauthoff G, Kaysser-Pyzalla AR. Materials Science and Engineering: A 2010;527:3864.

DOI: 10.1016/j.msea.2010.02.056

Google Scholar

[10] Ennis PJ, Zielinska-Lipiec A, Wachter O, Czyrska-Filemonowicz A. AcMat 1997;45:4901.

DOI: 10.1016/s1359-6454(97)00176-6

Google Scholar

[11] Pešička J, Kužel R, Dronhofer A, Eggeler G. AcMat 2003;51:4847.

Google Scholar

[12] Rojas D, Garcia J, Prat O, Sauthoff G, Kaysser-Pyzalla AR. Materials Science and Engineering: A 2011;528:5164.

DOI: 10.1016/j.msea.2011.03.037

Google Scholar

[13] Prat O, Garcia J, Rojas D, Carrasco C, Inden G. AcMat 2010;58:6142.

Google Scholar

[14] Lu H, Li L, Huang X, Li D. JAllC 2018;737:323.

Google Scholar

[15] Hollner S, Piozin E, Mayr P, Caës C, Tournié I, Pineau A, Fournier B. JNuM 2013;441:15.

DOI: 10.1016/j.jnucmat.2013.05.018

Google Scholar

[16] Ye Z, Wang P, Li D, Zhang Y, Li Y. Materials Science and Engineering: A 2014;616:12.

Google Scholar

[17] Abe F. 10 - New martensitic steels A2 - Gianfrancesco, Augusto Di. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Woodhead Publishing, 2017. p.323.

DOI: 10.1016/b978-0-08-100552-1.00010-5

Google Scholar

[18] Taneike M, Abe F, Sawada K. Nature 2003;424:294.

Google Scholar

[19] Cipolla L, Danielsen HK, Venditti D, Di Nunzio PE, Hald J, Somers MAJ. AcMat 2010;58:669.

DOI: 10.1016/j.actamat.2009.09.045

Google Scholar

[20] Danielsen HK, di Nunzio PE, Hald J. MMTA 2013;44:2445.

Google Scholar

[21] Sawada K, Kushima H, Tabuchi M, Kimura K. Materials Science and Engineering: A 2011;528:5511.

Google Scholar

[22] Gibbons SL, Abrahams RA, Vaughan MW, Barber RE, Harris RC, Arroyave R, Karaman I. Materials Science and Engineering: A 2018;725:57.

DOI: 10.1016/j.msea.2018.04.005

Google Scholar

[23] Yang G, Huang CX, Wang C, Zhang LY, Hu C, Zhang ZF, Wu SD. Materials Science and Engineering: A 2009;515:199.

Google Scholar

[24] Gross CT, Jiang Z, Mathai A, Chung Y-W. SurSc 2016;648:196.

Google Scholar