Microstructure Evolution and Mechanical Properties of Mg-7Gd-3Y-1Nd-2Zn-0.5Zr Alloy during Two-Step Homogenization Heat Treatment

Article Preview

Abstract:

This paper proposes a two-step homogenization heat treatment to dissolve the eutectic structure and long period stacking ordered phase (LPSO) formed during solidification into the α-Mg matrix. The microstructure evolution and mechanical properties of Mg–7Gd–3Y–1Nd–2Zn–0.5Zr alloy during the two-step homogenization heat treatment have been investigated systemically. The results reveal that as-cast alloy is composed mainly of α-Mg, (Mg,Zn)3RE, eutectic phase, stacking fault, block-like LPSO phase and square-shaped compounds rich in RE. The HRTEM results suggest that the block-like long period stacking ordered phase in as-cast alloy is 14H-type rather than 18R structure, and the stacking sequences of the 14H-LPSO phase are ABABACBCBCBCAB. After the first step homogenization of 520°C for 48 h, the eutectic structure has dissolved into the matrix, whereas the 14H-LPSO phase remains in the alloy. To further dissolve the LPSO phase into matrix, the second step homogenization of 540°C for 24h was adopted. After the second-step of homogenization, the residual 14H-LPSO phase has dissolved into the matrix totally. The as-homogenized alloy is composed mainly of α-Mg and square-shaped compounds rich in RE. The tensile tests at room temperature (RT) exhibit that the ultimate tensile strength (UTS), yield strength (YS) and elongation of as-cast alloy are 172 MPa, 128MPa and 2.8%, whereas the UTS, YS and elongation of as-homogenized alloy are 253 MPa, 185 MPa and 8.4, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-23

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.W. Lorimer, P.J. Apps, H. Karimzadeh, and J.F. King: Mater. Sci. Forum Vol. 419–422 (2003), p.279.

Google Scholar

[2] B. Smola, I. Stulikova, F. Vonbuch, and B.L. Mordlike: Mater. Sci. Eng. A Vol. 324 (2002), p.113 [3] Q.M. Peng, X.L. Hou, L.D. Wang, Y.M. Wu, Z.Y. Cao, and L.M. Wang: Mater. Des. Vol. 30 (2009), p.292.

Google Scholar

[4] B. Smola, L. Joska, V. Brˇezina, I. Stulíková, and F. Hnilica: Mater. Sci. Eng. C Vol. 32 (2012), p.659.

Google Scholar

[5] B.Z. Wang, C.M. Liu, Y.H. Gao, S.J., Z.Y. Chen, and Z.L: Mater. Sci. Eng. A Vol. 702 (2017), p.22.

Google Scholar

[6] X.S. Xia, Q. Chen, Z.D. Zhao, M.L. Ma, X.G. Li, and K. Zhang: J. Alloys Compd. Vol. 623 (2015), p.62.

Google Scholar

[7] Y. Kawamura, K. Hayashi, and A. Inoue: Mater. Trans. Vol. 42 (2001), p.1171.

Google Scholar

[8] M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura: Scr. Mater. Vol. 53 (2005), p.799.

Google Scholar

[9] S. Zhang, W.C., Liu, X.Y. Gu, C. Lu, G.Y. Yuan, and W.J. Ding: J. Alloys Compd. Vol. 557 (2013), p.91.

Google Scholar

[10] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura: Acta Mater. Vol. 55 (2007), p.6798.

Google Scholar

[11] X.L Zhang, Z.H. Wang, W.B. Du, K. Liu, and S.B. Li: Mater. Des. Vol. 58 (2014), p.277.

Google Scholar

[12] R. Zhen, Y.S. Sun, F. Xue, J.J. Sun, and J. Bai: J. Alloys Compd. Vol. 550 (2013), p.273.

Google Scholar

[13] H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, and Y. Kawamura: J. Alloys Compd. Vol. 550 (2013), p.273.

Google Scholar

[14] D. Egusa and E. Abe: Acta Mater. Vol. 60 (2012), p.166.

Google Scholar

[15] M. Yamasaki, M. Matsushita, K. Hagihara, H. Izuno, E. Abed, and Y. Kawamura: Scr. Materialia Vol. 78–79 (2014), p.13.

Google Scholar

[16] Y. Kawamura and M. Yamasaki: Mater. Trans. Vol. 48 (2007), p.2986.

Google Scholar

[17] T. Itoi, T. Seimiya, Y. Kawamura, and M. Hirohash: Scri. Mater. Vol. 51 (2004), p.107.

Google Scholar

[18] J.K. Kim, W.S. Ko, S. Sandl€obes, M. Heidelmann, B. Grabowski, and D. Raabe: Acta Mater. Vol. 112(2016), p.171.

Google Scholar

[19] Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater. Vol. 60 (2012), p.6562.

Google Scholar

[20] X. Yang, Sh.S. Wu, S.L. Lü, L.Y. Hao, and X.G. Fang: Ultrason. Sonochem. Vol. 40 (2018), p.472.

Google Scholar

[21] D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng: J. Alloys Compd. Vol. 509 (2011), p.1696.

Google Scholar

[22] F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, Y.C. Yuan, and L.Y. Zhang: J. Alloys Compd. Vol. 601 (2014), p.140.

Google Scholar

[23] M. Li, K. Zhang, Z.W. Du, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J.W. Yuan, T. Li, and J.B. Liu: Mater. Charact. Vol. 109 (2015), p.66.

Google Scholar

[24] Metallic materials-tensile testing-part 1: method of test at room temperature (ISO6892-1: 2009, MOD), GB/T 228.1-2010, p.35.

Google Scholar

[25] M. Li, K. Zhang, Z.W. Du, X.G. Li, and M.L. Ma: Trans. Nonferrous Met. Soc. China Vol. 26(2016), p.1835.

Google Scholar

[26] M. Li, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, G.L. Shi, J.W. Yuan, T. Li, and J.B. Liu: Mater. Sci. Eng. A Vol. 626(2015), p.415.

Google Scholar

[27] M. Suzuki, T. Kimura, J. Koike, and K. Maruyama. : Mater. Sci. Eng. A Vol. 387(2004), p.706.

Google Scholar

[28] T. Li, Z.W. Du, K. Zhang, X.G. Li, J.W. Yuan, Y.J. Li, M.L. Ma, and G.L. Shi: Trans. Nonferrous Met. Soc. China Vol. 22(2012), p.2877.

Google Scholar

[29] Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater Vol. 58 (2010), p.2936.

Google Scholar

[30] X.G. Zhang, L.G. Meng, C. F. Fang, P. Peng, F. Ja, and H. Hao: Mater. Sci. Eng. A Vol. 586(2013), p.19 M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar