[1]
O.I. Sidorov, S.A. Kapustin, A.A. Zhurba, N.I. Sidorova, V.I. Elizarov, A thermal protective compound elastic at negative temperatures, Polym. Sci. Ser. B. 11 (2018) 393-396.
DOI: 10.1134/s1995421218040214
Google Scholar
[2]
S. Jafarzadeh, F. Ariffin, S. Mahmud, A.K. Alias, S.F. Hosseini, M. Ahmad, Improving the physical and protective functions of semolina films by embedding a blend nanofillers (ZnO-nr and nano-kaolin), Food Packaging Shelf. 12 (2017) 66-75.
DOI: 10.1016/j.fpsl.2017.03.001
Google Scholar
[3]
V.F. Kablov, O.M. Novopol'tseva, N.A., Keibal, V.G. Kochetkov, D.A. Kryukova, A study of the effect of kaolin fibers on properties of elastomeric heat-protection materials, Russ. J. Appl. Chem. 90 (2017) 797-800.
DOI: 10.1134/s1070427217050214
Google Scholar
[4]
V.A. Tarasov, M.A. Komkov, V.A. Romanenkov, A.I. Alyamovsky, N.I. Kopyl, R.V. Boyarskaya, Theory and practice for the manufacture of a composite thermal heat shield for a space ship, IOP Conf. Series: Mater. Sci. and Eng. 153 (2015) 012015.
DOI: 10.1088/1757-899x/153/1/012015
Google Scholar
[5]
R.G. Puri and A.S. Khanna, Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel, Prog. Org. Coat. 92 (2015) 8-15.
DOI: 10.1016/j.porgcoat.2015.11.016
Google Scholar
[6]
V.F. Kablov, N.A. Keibal, V.G. Kochetkov, A.O. Motchenko, Y.M. Antonov, Research of the influence of carbon microfiber on the properties of elastomer fire-protective materials, Russ. J. Appl. Chem. 91 (2018) 1160-1164.
DOI: 10.1134/s1070427218070145
Google Scholar
[7]
V.F. Stroganov and & M.O. Amel'chenko, The effect of activated fillers on the properties of styrene–acrylic adhesives, Polym. Sci. Ser. B. 10 (2017) 50-54.
DOI: 10.1134/s1995421217010208
Google Scholar
[8]
C. Yong, C. Mei, M. Guan, Q. Wu, J. Han, X. Sun, A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties, Compos. Interface. 25 (2018) 301-315.
DOI: 10.1080/09276440.2018.1400271
Google Scholar
[9]
H.L. Alvarez, C.M. Di Bella, G.M. Colavita, P. Oricchio, J. Strachnoy, Comparative effects of kaolin and calcium carbonate on apple fruit surface temperature and leaf net CO2 assimilation, J. Appl. Hortic. 17 (2015) 176-180.
DOI: 10.37855/jah.2015.v17i03.33
Google Scholar
[10]
X.M. Zhao and G.Y. Liu, Promoting thermal protection effect of composite fabrics used for fire-proof garments: a methodological review, Mater. Rev. 31 (2017) 77-83.
Google Scholar
[11]
X.M. Zhao and Y.J. Liu, Production of carbon fibre bulked yarns by the airflow dispersion method, Fibres Text. East. Eur. 25 (2017) 34-40.
DOI: 10.5604/01.3001.0010.5366
Google Scholar
[12]
Y.J. Liu, X.M. Zhao, X. Tuo, A study on the performance of the air textured yarn of glass fiber, J. Funct. Mater. 47 (2016) 1082-1086.
Google Scholar
[13]
G.Y. Liu, Y.J. Liu and Zhao XM, A study of the thermal protective performance of the outer fabric material for fire proximity suits, J. Text. Inst. 109 (2018) 851-857.
DOI: 10.1080/00405000.2017.1378399
Google Scholar
[14]
G.Y. Liu, Y.J. Liu, X.M. Zhao, A study on protecting efficiency to the radiative heat of the outer fabric for the fire proximity suits, Mater. Rev. 31 (2017) 116-120.
Google Scholar
[15]
Y.J. Liu, X.M. Zhao, X. Tuo, A discussion on the development and performance of the bulk yarn of glass fiber used as thermal insulation material, Mater. Rev. 30 (2016) 103-107.
Google Scholar
[16]
Y.J. Liu, G.Y. Liu, X.M. Zhao, Research on thermal physical properties of the bulk yarn fabric of glass fiber, Mater. Sci. Technol. 25 (2017) 50-53.
Google Scholar
[17]
J.Z. He and J. Li, Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time, Text. Res. J. 86 (2015) 235-244.
DOI: 10.1177/0040517515588272
Google Scholar
[18]
Y. Su, J.Z. He J. Li, An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation, Text. Res. J. 87 (2016) 1953-1967.
DOI: 10.1177/0040517516660892
Google Scholar
[19]
Y. Carpier, B. Vieille, M.A. Maaroufi, A. Coppalle,F. Barbe, Mechanical behavior of carbon fibers polyphenylene sulfide composites exposed to radiant heat flux and constant compressive force, Compos. Struct. 200 (2018) 1-11.
DOI: 10.1016/j.compstruct.2018.05.086
Google Scholar
[20]
H. Zhang, R.H. McQueen, J.C. Batcheller, S.A. Paskaluk, G. Murtaza, Clothing in the kitchen: Evaluation of fabric performance for protection against hot surface contact, hot liquid and low-pressure steam burns, Text. Res. J. 85 (2015) 2136-2146.
DOI: 10.1177/0040517515581584
Google Scholar
[21]
Y.H. Lu, G.W. Song, J. Li, The impact of air gap on thermal performance of protective clothing against hot water spray, Text. Res. J. 85 (2014) 709-721.
DOI: 10.1177/0040517514553875
Google Scholar
[22]
S. Mandal and G.W. Song, Thermal sensors for performance evaluation of protective clothing against heat and fire: a review, Text. Res. J. 85 (2014): 101-112.
DOI: 10.1177/0040517514542864
Google Scholar
[23]
K. Grigoriou and A.P. Mouritz, Modelling and testing of fibre metal laminates and their constituent materials in fire, Compos. Struct. 200 (2018) 25-35.
DOI: 10.1016/j.compstruct.2018.05.106
Google Scholar
[24]
G.Y. Liu, Y.J. Liu, X.M. Zhao, Effects of the potassium titanate functional filler types on the thermal protection performance of heat resistant ablative coated fabrics, Nano 13 (2018) 1850014.
DOI: 10.1142/s1793292018500145
Google Scholar
[25]
A. Younes, V. Sankaran, A. Seidel, C. Cherif, Study of tensile behavior for high-performance fiber materials under high-temperature loads, Text. Res. J. 84 (2014) 1867-1880.
DOI: 10.1177/0040517513499434
Google Scholar
[26]
Y. Wang, X.G. Chen, R. Young, I. Kinloch, A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics, Compos. Struct. 140 (2016) 44-52.
DOI: 10.1016/j.compstruct.2015.12.055
Google Scholar
[27]
Y. Xu, X.G. Chen, Y. Wang, Z.S. Yuan, Stabbing resistance of body armour panels impregnated with shear thickening fluid, Compos. Struct. 163 (2017) 465-473.
DOI: 10.1016/j.compstruct.2016.12.056
Google Scholar
[28]
Y.S. Zhang. Numerical simulation study of the heat transfer of glass fiber fabrics. China: Tianjin Polytechnic University, (2016).
Google Scholar
[29]
J. Jiang, S.X. Wang, S.H. Zhang, Q.B. Li, Y.C. Gu, S. Chen, Nano titanium dioxide/PAoQ-coated polybenzoxazol fibers for enhancing anti-ultraviolet performance, Text. Res. J. 88 (2018) 2267-2275.
DOI: 10.1177/0040517517720501
Google Scholar
[30]
D. Kowalczyk, S. Brzezinski, I. Kaminska, Multifunctional nanocoating finishing of polyester/cotton woven fabric by the sol-gel method, Text. Res. J. 88 (2018) 946-956.
DOI: 10.1177/0040517517693979
Google Scholar
[31]
F.X. Zhang, H. Liang, G.X. Zhang, Colorant-free coloration and superhydrophilic modification of poly(ethylene terephthalate) fabric surface by H2O2 and nano-TiO2 ultraviolet photocatalysis, Text. Res. J. 86 (2018) 1009-1022.
DOI: 10.1177/0040517515603800
Google Scholar
[32]
H. Zhang, H. Zhu, R.J. Sun, Fabrication of photocatalytic TiO2 nanoparticle film on PET fabric by hydrothermal method, Text. Res. J. 82 (2018) 747-754.
DOI: 10.1177/0040517511424526
Google Scholar
[33]
G.Y. Liu, Y.J. Liu, X.M. Zhao, The influence of spherical nano-SiO2 content on the thermal protection performance of thermal insulation ablation resistant coated fabrics, J. Nanomater. 2017 (2017) 1-11.
DOI: 10.1155/2017/2176795
Google Scholar