The Influence of the Kaolin Content on the Thermal Protection Property of Double-Layer Coating of Flexible Composites

Article Preview

Abstract:

The comparison and analysis for the preparation of related performance indicators of the thermal protection such as the ablation resistance performance, thermal stability at high temperature and reflection ability of the heat ray of kaolin double-layer coated flexible composites were carried on. Because of the 2 d stratified structure of kaolin, and at the same time it processes the higher refractoriness, excellent resistance to the elevated temperature, the certain heat insulation and the reflection performance of the heat ray, the adequate padding of kaolin can improve the prepared thermal protection ability of double-layer coating of flexible composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-143

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.I. Sidorov, S.A. Kapustin, A.A. Zhurba, N.I. Sidorova, V.I. Elizarov, A thermal protective compound elastic at negative temperatures, Polym. Sci. Ser. B. 11 (2018) 393-396.

DOI: 10.1134/s1995421218040214

Google Scholar

[2] S. Jafarzadeh, F. Ariffin, S. Mahmud, A.K. Alias, S.F. Hosseini, M. Ahmad, Improving the physical and protective functions of semolina films by embedding a blend nanofillers (ZnO-nr and nano-kaolin), Food Packaging Shelf. 12 (2017) 66-75.

DOI: 10.1016/j.fpsl.2017.03.001

Google Scholar

[3] V.F. Kablov, O.M. Novopol'tseva, N.A., Keibal, V.G. Kochetkov, D.A. Kryukova, A study of the effect of kaolin fibers on properties of elastomeric heat-protection materials, Russ. J. Appl. Chem. 90 (2017) 797-800.

DOI: 10.1134/s1070427217050214

Google Scholar

[4] V.A. Tarasov, M.A. Komkov, V.A. Romanenkov, A.I. Alyamovsky, N.I. Kopyl, R.V. Boyarskaya, Theory and practice for the manufacture of a composite thermal heat shield for a space ship, IOP Conf. Series: Mater. Sci. and Eng. 153 (2015) 012015.

DOI: 10.1088/1757-899x/153/1/012015

Google Scholar

[5] R.G. Puri and A.S. Khanna, Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel, Prog. Org. Coat. 92 (2015) 8-15.

DOI: 10.1016/j.porgcoat.2015.11.016

Google Scholar

[6] V.F. Kablov, N.A. Keibal, V.G. Kochetkov, A.O. Motchenko, Y.M. Antonov, Research of the influence of carbon microfiber on the properties of elastomer fire-protective materials, Russ. J. Appl. Chem. 91 (2018) 1160-1164.

DOI: 10.1134/s1070427218070145

Google Scholar

[7] V.F. Stroganov and & M.O. Amel'chenko, The effect of activated fillers on the properties of styrene–acrylic adhesives, Polym. Sci. Ser. B. 10 (2017) 50-54.

DOI: 10.1134/s1995421217010208

Google Scholar

[8] C. Yong, C. Mei, M. Guan, Q. Wu, J. Han, X. Sun, A comparative study of different nanoclay-reinforced cellulose nanofibril biocomposites with enhanced thermal and mechanical properties, Compos. Interface. 25 (2018) 301-315.

DOI: 10.1080/09276440.2018.1400271

Google Scholar

[9] H.L. Alvarez, C.M. Di Bella, G.M. Colavita, P. Oricchio, J. Strachnoy, Comparative effects of kaolin and calcium carbonate on apple fruit surface temperature and leaf net CO2 assimilation, J. Appl. Hortic. 17 (2015) 176-180.

DOI: 10.37855/jah.2015.v17i03.33

Google Scholar

[10] X.M. Zhao and G.Y. Liu, Promoting thermal protection effect of composite fabrics used for fire-proof garments: a methodological review, Mater. Rev. 31 (2017) 77-83.

Google Scholar

[11] X.M. Zhao and Y.J. Liu, Production of carbon fibre bulked yarns by the airflow dispersion method, Fibres Text. East. Eur. 25 (2017) 34-40.

DOI: 10.5604/01.3001.0010.5366

Google Scholar

[12] Y.J. Liu, X.M. Zhao, X. Tuo, A study on the performance of the air textured yarn of glass fiber, J. Funct. Mater. 47 (2016) 1082-1086.

Google Scholar

[13] G.Y. Liu, Y.J. Liu and Zhao XM, A study of the thermal protective performance of the outer fabric material for fire proximity suits, J. Text. Inst. 109 (2018) 851-857.

DOI: 10.1080/00405000.2017.1378399

Google Scholar

[14] G.Y. Liu, Y.J. Liu, X.M. Zhao, A study on protecting efficiency to the radiative heat of the outer fabric for the fire proximity suits, Mater. Rev. 31 (2017) 116-120.

Google Scholar

[15] Y.J. Liu, X.M. Zhao, X. Tuo, A discussion on the development and performance of the bulk yarn of glass fiber used as thermal insulation material, Mater. Rev. 30 (2016) 103-107.

Google Scholar

[16] Y.J. Liu, G.Y. Liu, X.M. Zhao, Research on thermal physical properties of the bulk yarn fabric of glass fiber, Mater. Sci. Technol. 25 (2017) 50-53.

Google Scholar

[17] J.Z. He and J. Li, Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time, Text. Res. J. 86 (2015) 235-244.

DOI: 10.1177/0040517515588272

Google Scholar

[18] Y. Su, J.Z. He J. Li, An improved model to analyze radiative heat transfer in flame-resistant fabrics exposed to low-level radiation, Text. Res. J. 87 (2016) 1953-1967.

DOI: 10.1177/0040517516660892

Google Scholar

[19] Y. Carpier, B. Vieille, M.A. Maaroufi, A. Coppalle,F. Barbe, Mechanical behavior of carbon fibers polyphenylene sulfide composites exposed to radiant heat flux and constant compressive force, Compos. Struct. 200 (2018) 1-11.

DOI: 10.1016/j.compstruct.2018.05.086

Google Scholar

[20] H. Zhang, R.H. McQueen, J.C. Batcheller, S.A. Paskaluk, G. Murtaza, Clothing in the kitchen: Evaluation of fabric performance for protection against hot surface contact, hot liquid and low-pressure steam burns, Text. Res. J. 85 (2015) 2136-2146.

DOI: 10.1177/0040517515581584

Google Scholar

[21] Y.H. Lu, G.W. Song, J. Li, The impact of air gap on thermal performance of protective clothing against hot water spray, Text. Res. J. 85 (2014) 709-721.

DOI: 10.1177/0040517514553875

Google Scholar

[22] S. Mandal and G.W. Song, Thermal sensors for performance evaluation of protective clothing against heat and fire: a review, Text. Res. J. 85 (2014): 101-112.

DOI: 10.1177/0040517514542864

Google Scholar

[23] K. Grigoriou and A.P. Mouritz, Modelling and testing of fibre metal laminates and their constituent materials in fire, Compos. Struct. 200 (2018) 25-35.

DOI: 10.1016/j.compstruct.2018.05.106

Google Scholar

[24] G.Y. Liu, Y.J. Liu, X.M. Zhao, Effects of the potassium titanate functional filler types on the thermal protection performance of heat resistant ablative coated fabrics, Nano 13 (2018) 1850014.

DOI: 10.1142/s1793292018500145

Google Scholar

[25] A. Younes, V. Sankaran, A. Seidel, C. Cherif, Study of tensile behavior for high-performance fiber materials under high-temperature loads, Text. Res. J. 84 (2014) 1867-1880.

DOI: 10.1177/0040517513499434

Google Scholar

[26] Y. Wang, X.G. Chen, R. Young, I. Kinloch, A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics, Compos. Struct. 140 (2016) 44-52.

DOI: 10.1016/j.compstruct.2015.12.055

Google Scholar

[27] Y. Xu, X.G. Chen, Y. Wang, Z.S. Yuan, Stabbing resistance of body armour panels impregnated with shear thickening fluid, Compos. Struct. 163 (2017) 465-473.

DOI: 10.1016/j.compstruct.2016.12.056

Google Scholar

[28] Y.S. Zhang. Numerical simulation study of the heat transfer of glass fiber fabrics. China: Tianjin Polytechnic University, (2016).

Google Scholar

[29] J. Jiang, S.X. Wang, S.H. Zhang, Q.B. Li, Y.C. Gu, S. Chen, Nano titanium dioxide/PAoQ-coated polybenzoxazol fibers for enhancing anti-ultraviolet performance, Text. Res. J. 88 (2018) 2267-2275.

DOI: 10.1177/0040517517720501

Google Scholar

[30] D. Kowalczyk, S. Brzezinski, I. Kaminska, Multifunctional nanocoating finishing of polyester/cotton woven fabric by the sol-gel method, Text. Res. J. 88 (2018) 946-956.

DOI: 10.1177/0040517517693979

Google Scholar

[31] F.X. Zhang, H. Liang, G.X. Zhang, Colorant-free coloration and superhydrophilic modification of poly(ethylene terephthalate) fabric surface by H2O2 and nano-TiO2 ultraviolet photocatalysis, Text. Res. J. 86 (2018) 1009-1022.

DOI: 10.1177/0040517515603800

Google Scholar

[32] H. Zhang, H. Zhu, R.J. Sun, Fabrication of photocatalytic TiO2 nanoparticle film on PET fabric by hydrothermal method, Text. Res. J. 82 (2018) 747-754.

DOI: 10.1177/0040517511424526

Google Scholar

[33] G.Y. Liu, Y.J. Liu, X.M. Zhao, The influence of spherical nano-SiO2 content on the thermal protection performance of thermal insulation ablation resistant coated fabrics, J. Nanomater. 2017 (2017) 1-11.

DOI: 10.1155/2017/2176795

Google Scholar