Recent Studies of Surface Self-Nanocrystallization (SSNC) of Metallic Materials

Article Preview

Abstract:

Surface self-nanocrystallization (SSNC) is a new surface modification technology to develop new materials, which can obtain nanostructured layers with nanograins on the metals surface without changing the chemical composition of the metals. In this study, SSNC was introduced from the aspects of the preparation methods, microstructural mechanism, mechanical properties, surface roughness, corrosion resistance and applications. This paper will provide experience and reference for further comprehensive researches and industrial applications of SSNC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-168

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 35 (2004) 1-29.

Google Scholar

[2] K. Lu, J. Lu, Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach, J Mat. Sci. Tech. 15 (1999) 193-197.

Google Scholar

[3] Z. Wang, X. Yong, N.R. Tao, S. Li, G. Liu, J. Lv, K. Lu, The improvement of friction and wear properties of low carbon steel by means of surface nanocrystallization, Acta Metallrugica Sinica. 37 (2001) 1251-1255.

Google Scholar

[4] L. Waltz, D. Retraint, A. Roos, P. Olier, J. Lu, High strength nanocrystallized multilayered structure obtained by SMAT and co-rolling, Mater. Sci. Forum. 614 (2008) 249-254.

DOI: 10.4028/www.scientific.net/msf.614.249

Google Scholar

[5] L. Jin, W.F. Cui, X.Song, L. Zhou, The formation mechanisms of surface nanocrystallites in β-type biomedical TiNbZrFe alloy by surface mechanical attrition treatment, Appl. Surf. Sci. 347 (2015) 553-560.

DOI: 10.1016/j.apsusc.2015.04.137

Google Scholar

[6] S.H. Yi, X.Q. He, J. Lu, Bistable metallic materials produced by nanocrystallization process, Mater Design. 141 (2018) 374-383.

DOI: 10.1016/j.matdes.2018.01.010

Google Scholar

[7] T. Balusamy, S. Kumar, T.S.N.S. Narayanan, Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel, Corro. Sci. 52 (2010) 3826-3834.

DOI: 10.1016/j.corsci.2010.07.004

Google Scholar

[8] G. Liu, J. Lu, K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A. 286 (2000) 91-95.

DOI: 10.1016/s0921-5093(00)00686-9

Google Scholar

[9] H.Q. Ye, X.M. Fan, Surface nanocrystallization of 7A04 aluminium alloy induced by circulation rolling plastic deformation, Trans. Nonferrous Met. Soc. China. 16 (2006) 656-660.

DOI: 10.1016/s1003-6326(06)60272-0

Google Scholar

[10] K. Zhao, M. Wang, X.L. Cheng, T. Chuan, Mechanism and nanostructure evolution of surface self-nanocrystallization of TC17, Rare Metal Mat. Eng. 42(2013) 2048-2052.

Google Scholar

[11] D.M. Ba, S.N. Ma, C.Q. Li, F.J. Meng, Surface nanostructure formation mechanism of 45 steel induced by supersonic fine particles pombarding, J Univ. Sci. Technol. B. 15 (2008) 561-567.

DOI: 10.1016/s1005-8850(08)60105-x

Google Scholar

[12] F.Y. Liu, X.M. Fan, Surface nanocrystallization induced by severe plastic deformation using high-speed rotation wire-brushing, T Mater. Heat Treat. 29 (2008) 162-165.

Google Scholar

[13] D. Song, A.B. Ma, W, Sun, J.H. Jiang, J.Y. Jiang, D.H. Yang, G.H. Guo, Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing, Corro. Sci. 82 (2014) 437-441.

DOI: 10.1016/j.corsci.2014.01.034

Google Scholar

[14] A.L. Wen, R.M. Ren, S.W. Wang, S.I. Nishida, Effect of surface nano-crystallization on microstructure and mechanic properties of commercial pure titanium, Key Eng. Mat. 261-263 (2004) 1605-1610.

DOI: 10.4028/www.scientific.net/kem.261-263.1605

Google Scholar

[15] X.N. Guan, J.H. Jiang, J.Q. Chen, A.B. Ma, D. Song, X.B. Li, Effect of surface nanocrystallization on electrochemical corrosion behaviours of Cu-Mg alloy, Trans. Nonferrous Met. Soc. China 27 (2017) 477-485.

Google Scholar

[16] F.H. Sun, Z.M. Zhang, H.S. Shen, M. Chen, Deposition and characterization of ultra-smooth nanocrystalline diamond films using a graphite-grid assisted hot filament CVD method, Mater. Sci. Forum. 532-533 (2006) 249-252.

DOI: 10.4028/www.scientific.net/msf.532-533.249

Google Scholar

[17] J.Y. Huang, Y.T. Zhu, H. Jiang, A.V. Hamza, Abnormal strain hardeningin nanostructured titanium at high strain rates and large strains, Acta Metallic. 49 (2001) 1497-1502.

Google Scholar

[18] N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater. 50 (2002) 4603-4616.

DOI: 10.1016/s1359-6454(02)00310-5

Google Scholar

[19] Z.J. Cheng, D. Song, J.Y. Jiang, J.H. Jiang, Microstructure characteristic and electrochemical corrosion behavior of surface nano-crystallization modified carbon steel, J Iron Steel Res., Int. 23 (2016) 1281-1289.

DOI: 10.1016/s1006-706x(16)30189-3

Google Scholar

[20] K.Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lv, Nanostructure formation mechanism of α-titanium using SMAT, Acta Mater. 52 (2004) 4101-4110.

DOI: 10.1016/j.actamat.2004.05.023

Google Scholar

[21] A.Q. Lv, G. Liu, C.M. Liu, Microstructural evolution of the surface layer of 316L stainless steel induced by mechanical attrition, Acta Metallrugica Sinica. 40 (2004) 943-947.

Google Scholar

[22] H. Zhang, G. Liu, Z. Hei, K. Lu, J. Lv, Surface nanocrystallization of AISI 304 stainless steel induced by surface mechanical attrition treatment I. Structure and property, Acta Metallrugica Sinica. 39 (2003) 347-350.

DOI: 10.1016/s1359-6454(02)00594-3

Google Scholar

[23] D.M. Ba, S.M. Ma, C.Q. Li, T.Y. Xiong, Investigation of Surface Nanocrystallization of 38CrSi Steel by SFPB, Mater. Eng. 12 (2006) 3-7.

Google Scholar

[24] D. Song, J.H. Jiang, X.N. Guan, Y.X. Qiao, X.B. Li, J.Q. Chen, J.P. Sun, A.B. Ma, Effect of surface nanocrystallization on corrosion resistance of the conformed Cu-0.4%Mg alloy in NaCl solution, Metals. 8 (2018) 765.

DOI: 10.3390/met8100765

Google Scholar

[25] C.E. Carlton, P.J. Ferreira,What is behind the inverse Hall-Petch effect in nanocrystalline materials, Acta Mater. 55 (2007) 3749–3756.

DOI: 10.1016/j.actamat.2007.02.021

Google Scholar

[26] T.F. Dalla, R. Lapovok, J. Sandlin P.F. Thomason, C.H.J. Davies, E.V. Pereloma, Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes, Acta Mater. 52 (2004) 4819–4832.

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[27] C.S. Wang, G. Liu, Surface nanostructure and properties of low carbon steel, Iron and Steel. 41 (2006) 60-63.

Google Scholar

[28] Y.X. Yu, B.L. He, Research reality and prospect about surface self-nanocrystallization and fatigue properties of magnesium alloy welded joints, Materials Review. 27 (2013) 121-124.

Google Scholar

[29] Y.P. Wang, Y. Li, K.N. Sun, Effect of process duration on the microstructures of fast multiple rotation rolling-induced nanocrystalline layer and its wear properties, J Mater Process Tech. 252 (2018) 159-166.

DOI: 10.1016/j.jmatprotec.2017.07.033

Google Scholar

[30] D.M. Ba, S.N. Ma, F.J. Meng, C.Q. Li, Friction and wear behaviors of nanocrystalline surface layer of chrome-silicon alloy steel, Surf. Coat. Tech. 202 (2007) 254-260.

DOI: 10.1016/j.surfcoat.2007.05.033

Google Scholar

[31] J. Zhang, X.B. Ou, Thermal stability of nanocrystalline in surface layer of magnesium alloy AZ91D, Trans. Nonferrous Met. Soc. China. 20 (2010) 1340-1344.

DOI: 10.1016/s1003-6326(09)60301-0

Google Scholar