Coal Powder and Ethylene-Propylene-Diene Monomer Reinforced Hybrid Polypropylene Composites

Article Preview

Abstract:

For the better mechanical and thermal properties of polypropylene (PP), PP sea-island structured composites with elastomer ethylene-propylene-diene monomer (EPDM) and coal powder were prepared by melt-blending method. Coupling agent γ-methacryloxypropyltrimethoxysilane (KH-570) was used as modifier to improve the superficial capacity of coal powder. The structural changes and properties of modified coal powder and composites were characterized and analyzed by Fourier Transform Infrared Spectroscopy (FTIR), surface contact angle analysis, scanning electron microscope (SEM), thermogravimetric analysis (TGA) and mechanical testing. Results show that the modified coal powder has good hydrophobicity and sea-island structure is beneficial in improving the comprehensive performance of composites. The contact angle increases from 33.8° to 91.6° after modification. The initial decomposition temperature (T0) and largest weight loss temperature (Tmd) both have an increase with coal powder content and the maximum are 431.02 °C and 465.33 °C. The mechanical properties tend to go up first and then down with the addition of coal powder. PP/26EPDM/4coal composite has best mechanical properties as well as the impact strength and elongation at break are 60.9 MPa, 615.0%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-200

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. H. Redhwi, M. N. Siddiqui, A. L. Andrady, et al. Weatherability of conventional composites and nanocomposites of PVC and rutile titanium dioxide, Polym. Composite. 39 (2018) 2135-2141.

DOI: 10.1002/pc.24176

Google Scholar

[2] J. A. G. Calderon, R. L. Esparza, R. S. Guerrero, et al. Improvement in the energy dissipation capacity of polypropylene composites through a surface modification of titanium dioxide particles with a dicarboxylic acid, Thermochim. Acta. 664 (2018) 48-56.

DOI: 10.1016/j.tca.2018.04.008

Google Scholar

[3] J. G. Zhang. Research on the surface treatment of silicon dioxide on the tribological properties of carbon fiber-filled polymethylmethacrylate composite, J. Thermoplast. Compos. 29 (2014) 951-959.

DOI: 10.1177/0892705714551243

Google Scholar

[4] O. V. Alekseeva, A. V. Noskov, S. S. Guseinov, et al. The effect of silicon dioxide concentration on thermodynamic properties of polystyrene-based composites, Prot. Met. Phys. Chem+. 51 (2015) 253-256.

DOI: 10.1134/s2070205115020033

Google Scholar

[5] Q. C. Lu, Q. Dou. Investigation of the microstructures, properties, and toughening mechanism of polypropylene/calcium carbonate toughening masterbatch composites, J. App.l Polym. Sci. 134 (2017) 45515.

DOI: 10.1002/app.45515

Google Scholar

[6] C. Croitoru, C. Spirchez, D. Cristea, et al. Calcium carbonate and wood reinforced hybrid PVC composites, J. App.l Polym. Sci. 135 (2018) 46317.

DOI: 10.1002/app.46317

Google Scholar

[7] T. W. Xu, Z. X. Jia, J. L. Li, et al. Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer, Polym. Composite. 39 (2018) 377-385.

DOI: 10.1002/pc.23946

Google Scholar

[8] X. C. Xu, T. W. Wang. Electrical and rheological properties of carbon black and carbon fiber filled low-density polyethylene/ethylene vinyl acetate composites, Sci. Eng. Compos. Mater. 25 (2018) 715-723.

DOI: 10.1515/secm-2016-0080

Google Scholar

[9] G. Levi, M. Causà, P. Lacovig, et al. Mechanism and thermochemistry of coal char oxidation and desorption of surface oxides, Energ Fuel. 31 (2017) 2308-2316.

DOI: 10.1021/acs.energyfuels.6b02324

Google Scholar

[10] J. Stabik, M. Chomiak. Graded epoxy–hard coal composites: Surface resistivity study, J. Compos. Mater. 50 (2016) 3765-3777.

DOI: 10.1177/0021998315625452

Google Scholar

[11] S. Pusz, U. Szeluga, B. Nagel, et al. The influence of structural order of anthracite fillers on the curing behavior, morphology, and dynamic mechanical thermal properties of epoxy composites, Polym. Composite. 36 (2015) 336-347.

DOI: 10.1002/pc.22948

Google Scholar

[12] S. Sharma, A. K. Ghoshal. Study of kinetics of co-pyrolysis of coal and waste LDPE blends under argon atmosphere, Fuel. 89 (2010) 3943-3951.

DOI: 10.1016/j.fuel.2010.06.033

Google Scholar

[13] G. Z. Hu, Z. T. Bian, R. Xue, et al. Polymer-coal composite as a novel plastic material, Mater. Lett. 197 (2017) 31-34.

Google Scholar

[14] I. Šmit, M. Denac, I. Švab, et al. Structuring of polypropylene matrix in composites, Polimeri. 30 (2009) 183-192.

Google Scholar

[15] M. Khodabandelou, M. K. R. Aghjeh. Impact behavior of CNT-filled PP/EPDM blends: effect of dynamic vulcanization and PP-g-MA compatibilizer, Polym. Bull. 73 (2015) 1607-1626.

DOI: 10.1007/s00289-015-1566-2

Google Scholar

[16] P. Mahallati, D. Rodrigue. Effect of feeding strategy on the properties of PP/recycled EPDM blends, Int. Polum. Proc. 30 (2015) 276-283.

DOI: 10.3139/217.3008

Google Scholar

[17] J. Z. Liang, B. Zhu, W. Y. Ma. Morphology and mechanical properties of PP/POE/nano-CaCO3 composites, Polym. Composite. 37 (2016) 539-546.

DOI: 10.1002/pc.23210

Google Scholar

[18] P. M. A. Noah, L. M. Ayina Ohandja, R. Eba Medjo, et al. Study of thermal properties of mixed (PP/EPR)/ABS with five model compatibilizers, J. Energ. 2016 (2016) 1-9.

DOI: 10.1155/2016/8539694

Google Scholar

[19] I. Wender. Catalytic synthesis of chemicals from coal, Catal. Rev. 14 (1976) 97-129.

Google Scholar

[20] G. J. Cheng, J. Q. Luo, J. S. Qian, et al. Surface modification of nano-TiN by using silane coupling agent, Mater. Sci. Poland. 32 (2014) 214-219.

DOI: 10.2478/s13536-013-0175-8

Google Scholar

[21] B. G. Wei, Q. Chang, C. X. Bao, et al. Surface modification of filter medium particles with silane coupling agent KH550, Colloid. Surface. A. 434 (2013) 276-280.

DOI: 10.1016/j.colsurfa.2013.05.069

Google Scholar

[22] S. A. Semenova, Y. F. Patrakov. Dependence of the water wettability of the surfaces of fossil coals on their structure and properties, Solid Fuel Chem+. 51 (2017) 135-140.

DOI: 10.3103/s0361521917030090

Google Scholar

[23] C. Ni, X. N. Bu, W. C. Xia, et al. Effect of slimes on the flotation recovery and kinetics of coal particles, Fuel. 220 (2018) 159-166.

DOI: 10.1016/j.fuel.2018.02.003

Google Scholar

[24] G. J. Cheng, B. Tong, Z. F. Tang, et al. Surface functionalization of coal powder with different coupling agents for potential applications in organic materials, Appl. Surf. Sci. 313 (2014) 954-960.

DOI: 10.1016/j.apsusc.2014.06.115

Google Scholar

[25] H. L. Zhang, C. Z. Zhu, J. Y. Yu, et al. Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles, Constr. Bulid Mater. 98 (2015) 735-740.

DOI: 10.1016/j.conbuildmat.2015.08.138

Google Scholar

[26] J. L. Feyyisa, J. L. Daniels, M. A. Pando. Contact angle measurements for use in specifying organosilane-modified coal combustion fly ash, J. Mater. Civil. Eng. 29 (2017) 04017096.

DOI: 10.1061/(asce)mt.1943-5533.0001943

Google Scholar

[27] T. Kashiwagi, E. Grulke, J. Hilding, et al. Thermal degradation and flammability properties of Poly(propylene)/carbon nanotube composites, Macromol. Rapid. Comm. 23 (2002) 761-765.

DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k

Google Scholar

[28] J. H. Shinn. From coal to single stage and two-stage products:a reactive model of coal structure, Fuel. 63 (1983) 1187-1196.

DOI: 10.1016/0016-2361(84)90422-8

Google Scholar

[29] A. K. Sadhukhan, P. Gupta, R. K. Saha. Modeling and experimental investigations on the pyrolysis of large coal particles, Energ Fuel. 25 (2011) 5573-5583.

DOI: 10.1021/ef201162c

Google Scholar

[30] L. C. Sun, Q. L. Wu, Y. J. Xie, et al. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants, Rsc Adv. 00 (2015) 1-8.

DOI: 10.1039/c5ra23262g

Google Scholar

[31] M. R. Nakhaei, G. Naderi, A. Mostafapour. Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing, Iran. Polym. J. 25 (2016) 179-191.

DOI: 10.1007/s13726-015-0412-6

Google Scholar

[32] C. Srivabut, T. Ratanawilai, S. Hiziroglu. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber, Constr. Bulid Mater. 162 (2018) 450-458.

DOI: 10.1016/j.conbuildmat.2017.12.048

Google Scholar

[33] R. Wiwattananukul, B. Fan, M. Yamaguchi. Improvement of rigidity for rubber-toughened polypropylene via localization of carbon nanotubes, Compos. Sci. Technol. 141 (2017) 106-112.

DOI: 10.1016/j.compscitech.2017.01.012

Google Scholar

[34] H. Y. Kim, J. W. Choi, Y. C. Chung, et al. Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites, J. Mater. Cycles. Waste. 17 (2014) 781-789.

DOI: 10.1007/s10163-014-0311-5

Google Scholar

[35] F. C. Chiu, H. Z. Yen, C. C. Chen. Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer, Polym. Test. 29 (2010) 706-716.

DOI: 10.1016/j.polymertesting.2010.05.013

Google Scholar