[1]
H. H. Redhwi, M. N. Siddiqui, A. L. Andrady, et al. Weatherability of conventional composites and nanocomposites of PVC and rutile titanium dioxide, Polym. Composite. 39 (2018) 2135-2141.
DOI: 10.1002/pc.24176
Google Scholar
[2]
J. A. G. Calderon, R. L. Esparza, R. S. Guerrero, et al. Improvement in the energy dissipation capacity of polypropylene composites through a surface modification of titanium dioxide particles with a dicarboxylic acid, Thermochim. Acta. 664 (2018) 48-56.
DOI: 10.1016/j.tca.2018.04.008
Google Scholar
[3]
J. G. Zhang. Research on the surface treatment of silicon dioxide on the tribological properties of carbon fiber-filled polymethylmethacrylate composite, J. Thermoplast. Compos. 29 (2014) 951-959.
DOI: 10.1177/0892705714551243
Google Scholar
[4]
O. V. Alekseeva, A. V. Noskov, S. S. Guseinov, et al. The effect of silicon dioxide concentration on thermodynamic properties of polystyrene-based composites, Prot. Met. Phys. Chem+. 51 (2015) 253-256.
DOI: 10.1134/s2070205115020033
Google Scholar
[5]
Q. C. Lu, Q. Dou. Investigation of the microstructures, properties, and toughening mechanism of polypropylene/calcium carbonate toughening masterbatch composites, J. App.l Polym. Sci. 134 (2017) 45515.
DOI: 10.1002/app.45515
Google Scholar
[6]
C. Croitoru, C. Spirchez, D. Cristea, et al. Calcium carbonate and wood reinforced hybrid PVC composites, J. App.l Polym. Sci. 135 (2018) 46317.
DOI: 10.1002/app.46317
Google Scholar
[7]
T. W. Xu, Z. X. Jia, J. L. Li, et al. Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer, Polym. Composite. 39 (2018) 377-385.
DOI: 10.1002/pc.23946
Google Scholar
[8]
X. C. Xu, T. W. Wang. Electrical and rheological properties of carbon black and carbon fiber filled low-density polyethylene/ethylene vinyl acetate composites, Sci. Eng. Compos. Mater. 25 (2018) 715-723.
DOI: 10.1515/secm-2016-0080
Google Scholar
[9]
G. Levi, M. Causà, P. Lacovig, et al. Mechanism and thermochemistry of coal char oxidation and desorption of surface oxides, Energ Fuel. 31 (2017) 2308-2316.
DOI: 10.1021/acs.energyfuels.6b02324
Google Scholar
[10]
J. Stabik, M. Chomiak. Graded epoxy–hard coal composites: Surface resistivity study, J. Compos. Mater. 50 (2016) 3765-3777.
DOI: 10.1177/0021998315625452
Google Scholar
[11]
S. Pusz, U. Szeluga, B. Nagel, et al. The influence of structural order of anthracite fillers on the curing behavior, morphology, and dynamic mechanical thermal properties of epoxy composites, Polym. Composite. 36 (2015) 336-347.
DOI: 10.1002/pc.22948
Google Scholar
[12]
S. Sharma, A. K. Ghoshal. Study of kinetics of co-pyrolysis of coal and waste LDPE blends under argon atmosphere, Fuel. 89 (2010) 3943-3951.
DOI: 10.1016/j.fuel.2010.06.033
Google Scholar
[13]
G. Z. Hu, Z. T. Bian, R. Xue, et al. Polymer-coal composite as a novel plastic material, Mater. Lett. 197 (2017) 31-34.
Google Scholar
[14]
I. Šmit, M. Denac, I. Švab, et al. Structuring of polypropylene matrix in composites, Polimeri. 30 (2009) 183-192.
Google Scholar
[15]
M. Khodabandelou, M. K. R. Aghjeh. Impact behavior of CNT-filled PP/EPDM blends: effect of dynamic vulcanization and PP-g-MA compatibilizer, Polym. Bull. 73 (2015) 1607-1626.
DOI: 10.1007/s00289-015-1566-2
Google Scholar
[16]
P. Mahallati, D. Rodrigue. Effect of feeding strategy on the properties of PP/recycled EPDM blends, Int. Polum. Proc. 30 (2015) 276-283.
DOI: 10.3139/217.3008
Google Scholar
[17]
J. Z. Liang, B. Zhu, W. Y. Ma. Morphology and mechanical properties of PP/POE/nano-CaCO3 composites, Polym. Composite. 37 (2016) 539-546.
DOI: 10.1002/pc.23210
Google Scholar
[18]
P. M. A. Noah, L. M. Ayina Ohandja, R. Eba Medjo, et al. Study of thermal properties of mixed (PP/EPR)/ABS with five model compatibilizers, J. Energ. 2016 (2016) 1-9.
DOI: 10.1155/2016/8539694
Google Scholar
[19]
I. Wender. Catalytic synthesis of chemicals from coal, Catal. Rev. 14 (1976) 97-129.
Google Scholar
[20]
G. J. Cheng, J. Q. Luo, J. S. Qian, et al. Surface modification of nano-TiN by using silane coupling agent, Mater. Sci. Poland. 32 (2014) 214-219.
DOI: 10.2478/s13536-013-0175-8
Google Scholar
[21]
B. G. Wei, Q. Chang, C. X. Bao, et al. Surface modification of filter medium particles with silane coupling agent KH550, Colloid. Surface. A. 434 (2013) 276-280.
DOI: 10.1016/j.colsurfa.2013.05.069
Google Scholar
[22]
S. A. Semenova, Y. F. Patrakov. Dependence of the water wettability of the surfaces of fossil coals on their structure and properties, Solid Fuel Chem+. 51 (2017) 135-140.
DOI: 10.3103/s0361521917030090
Google Scholar
[23]
C. Ni, X. N. Bu, W. C. Xia, et al. Effect of slimes on the flotation recovery and kinetics of coal particles, Fuel. 220 (2018) 159-166.
DOI: 10.1016/j.fuel.2018.02.003
Google Scholar
[24]
G. J. Cheng, B. Tong, Z. F. Tang, et al. Surface functionalization of coal powder with different coupling agents for potential applications in organic materials, Appl. Surf. Sci. 313 (2014) 954-960.
DOI: 10.1016/j.apsusc.2014.06.115
Google Scholar
[25]
H. L. Zhang, C. Z. Zhu, J. Y. Yu, et al. Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles, Constr. Bulid Mater. 98 (2015) 735-740.
DOI: 10.1016/j.conbuildmat.2015.08.138
Google Scholar
[26]
J. L. Feyyisa, J. L. Daniels, M. A. Pando. Contact angle measurements for use in specifying organosilane-modified coal combustion fly ash, J. Mater. Civil. Eng. 29 (2017) 04017096.
DOI: 10.1061/(asce)mt.1943-5533.0001943
Google Scholar
[27]
T. Kashiwagi, E. Grulke, J. Hilding, et al. Thermal degradation and flammability properties of Poly(propylene)/carbon nanotube composites, Macromol. Rapid. Comm. 23 (2002) 761-765.
DOI: 10.1002/1521-3927(20020901)23:13<761::aid-marc761>3.0.co;2-k
Google Scholar
[28]
J. H. Shinn. From coal to single stage and two-stage products:a reactive model of coal structure, Fuel. 63 (1983) 1187-1196.
DOI: 10.1016/0016-2361(84)90422-8
Google Scholar
[29]
A. K. Sadhukhan, P. Gupta, R. K. Saha. Modeling and experimental investigations on the pyrolysis of large coal particles, Energ Fuel. 25 (2011) 5573-5583.
DOI: 10.1021/ef201162c
Google Scholar
[30]
L. C. Sun, Q. L. Wu, Y. J. Xie, et al. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants, Rsc Adv. 00 (2015) 1-8.
DOI: 10.1039/c5ra23262g
Google Scholar
[31]
M. R. Nakhaei, G. Naderi, A. Mostafapour. Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing, Iran. Polym. J. 25 (2016) 179-191.
DOI: 10.1007/s13726-015-0412-6
Google Scholar
[32]
C. Srivabut, T. Ratanawilai, S. Hiziroglu. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber, Constr. Bulid Mater. 162 (2018) 450-458.
DOI: 10.1016/j.conbuildmat.2017.12.048
Google Scholar
[33]
R. Wiwattananukul, B. Fan, M. Yamaguchi. Improvement of rigidity for rubber-toughened polypropylene via localization of carbon nanotubes, Compos. Sci. Technol. 141 (2017) 106-112.
DOI: 10.1016/j.compscitech.2017.01.012
Google Scholar
[34]
H. Y. Kim, J. W. Choi, Y. C. Chung, et al. Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites, J. Mater. Cycles. Waste. 17 (2014) 781-789.
DOI: 10.1007/s10163-014-0311-5
Google Scholar
[35]
F. C. Chiu, H. Z. Yen, C. C. Chen. Phase morphology and physical properties of PP/HDPE/organoclay (nano) composites with and without a maleated EPDM as a compatibilizer, Polym. Test. 29 (2010) 706-716.
DOI: 10.1016/j.polymertesting.2010.05.013
Google Scholar