Effect of Sb2O3 Particle Size and Filling Amount on Crystallization and Mechanical Properties of Sb2O3/PP Composites

Article Preview

Abstract:

In this paper, Sb2O3/PP composite specimens were prepared by ball milling and melt blending. The effects of Sb2O3 particle size and filling amount on the toughening, reinforcing effect and crystallinity of PP composites were analyzed by notch impact test, tensile test, SEM, XRD and DSC characterization. The experimental results show that the filling of Sb2O3 particles can improve the mechanical properties and crystallization properties of Sb2O3/PP composites. With the increase of filling amount of Sb2O3 particles, the tensile strength and impact strength of Sb2O3/PP composite increased first and then decreased. When the content of Sb2O3 is 2 wt.%, the tensile strength and impact strength of Sb2O3/PP composites reach the maximum. When the filling amount is the same, the crystallization and mechanical properties of nanoSb2O3/PP composites are better than those of micron Sb2O3/PP composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-236

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.K. Koo, T. Inoue, K. Miyasaka, Toughened plastic consisting of brittle particles and ductile matrix, Polym. Eng. Sci. 25 (1985) 741-746.

DOI: 10.1002/pen.760251203

Google Scholar

[2] D. Li, Z. Qi, The fracture toughness CaCO3 reinforced polypropylene composite, Polym. Mater. Sci. Eng. 7(2) (1991) 18-25.

Google Scholar

[3] J. Feng, M. Chen, Advance in polymers toughened by rigid inorganic particles, China Plastics. 14(11) (2000) 10-15.

Google Scholar

[4] M. Si, J. Hao, L. Xu, Analysis of nano-Sb2O3 in flame retardancy applications, China Plastics. 27(8) (2013) 1-7.

Google Scholar

[5] X. Luo, M. He, J. Guo, Study on long glass fiber reinforced polypropylene composites based on complex flame retardant of DBDPE-Sb2O3, China Plast. Ind. 12(21) (2013) 75-80.

Google Scholar

[6] Y. Zheng, B. Wang, Study on the properties of TiO2/epoxy nano-composites, Acta. Polym. Sin. 19(4) (2002) 11-13.

Google Scholar

[7] M.Z. Rong, M.Q. Zhang, Y.X. Zheng, Improvement of tensile properties of nano-SiO2/PP composites unrelate onto percolation mechanism, Polymer. 42(1) (2001) 3301-3304.

DOI: 10.1016/s0032-3861(00)00741-2

Google Scholar

[8] X. Xu, Y. Zhang, B. Li, Mechanical and thermal properties of nano-SiO2/PA66 composites, Acta. Polym. Sin. 24(4) (2008) 56-62.

Google Scholar

[9] W.C.J. Zuiderduin, C. Westzaan, J. Huetink, Toughening of polypropylene with calcium carbonate particles, Polymer. 44 (2003) 261-275.

DOI: 10.1016/s0032-3861(02)00769-3

Google Scholar

[10] Z. Bai, S. Zhen, H. Shen, Preparation of antimony trioxide-wollaston composite filler and its application in polypropylene, China Powd. Sci. Tec. 4(2) (2010) 54-57.

Google Scholar

[11] X. Ren, L. Bai, G. Wang, Reinforcement and to ushering of polypropylene composites by nano-particle CaCO3, Chemical World. 83(2) (2000) 83-87.

Google Scholar

[12] G. Ji, J. Tao, T. Wang, Investigation on the mechanical properties of nano-TiO2/PP composites, Acta. Polym. Sin. 22(5) (2005) 100-106.

Google Scholar

[13] J. Liu, X. Hao, Polymer based nano-modified materials. Sci. Technol. Press, Beijing, (2009).

Google Scholar

[14] J. Sun, Y. Huang, H. Cao, Effects of surface treatment of CO3O4 nano-particles on the properties of their nanocomposites, Acta Polym. Sin. 21(3) (2004) 33-37.

Google Scholar

[15] X. Jiang, Y. Zhang, Y. Zhang, Crystallization behaviour of dynamicall cured polypropylene/ epoxy blends, J. Polym. Sci. Pol. Phys. 42 (2004) 1181- 1191.

DOI: 10.1002/polb.10759

Google Scholar

[16] K. Ozazwa, Y. Sakka, M. Amano, Perparation and eletrical conductivity of three types of antimonic acid films, J. Mater. Res. 13 (1998) 830-833.

DOI: 10.1557/jmr.1998.0107

Google Scholar