An Algorithm for Modeling the Covalent Triazine-Based Frameworks

Article Preview

Abstract:

An algorithm for generating the representative structures of covalent triazine-based frameworks (CTFs) is proposed, and examined by being applied to the framework synthesized by the trimerization of dicyanobenzene. The algorithm is validated by the comparison between the calculated and experimental results of the structural properties such as surface areas and pore size distributions, which shows acceptable consistency. Moreover, the presented modeling approach can be expected for more extensive use for other CTFs. Thus the simulated atomistic strucutures produced from the modeling method can improve the understanding for amorphous structures of the CTFs which have already been developed, as well as predict the theoretical model of new CTFs, and provide useful design strategies for the future experimental efforts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Hu, J. Wang, S. Hu, L. Li, G. Wang, J. Qiu, X. Jian, Inherent N, O-containing carbon frameworks as electrode materials for high-performance supercapacitors, Nanoscale. 8 (2016) 16323-16331.

DOI: 10.1039/c6nr05146d

Google Scholar

[2] S. Das, P. Heasman, T. Ben, S. Qiu, Porous organic materials: strategic design and structure–function correlation, Chem. Rev. 117 (2016) 1515-1563.

DOI: 10.1021/acs.chemrev.6b00439

Google Scholar

[3] F. Hu, J. Wang, S. Hu, L. Li, W. Shao, J. Qiu, Z. Lei, W. Deng, X. Jian, Engineered fabrication of hierarchical frameworks with tuned pore structure and N,O-co-doping for high-performance supercapacitors, ACS Appl. Mater. Interfaces. 9 (2017) 31940-31949.

DOI: 10.1021/acsami.7b09801

Google Scholar

[4] S.S. Han, W.A. Goddard, Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature, J. Am. Chem. Soc. 129 (2007) 8422-8423.

DOI: 10.1021/ja072599+

Google Scholar

[5] J.R. Hunt, C.J. Doonan, J.D. LeVangie, A.P. Cote, O.M. Yaghi, Reticular synthesis of covalent organic borosilicate frameworks, J. Am. Chem. Soc. 130 (2008) 11872-11873.

DOI: 10.1021/ja805064f

Google Scholar

[6] C. Gu, D. Liu, W. Huang, J. Liu, R. Yang, Synthesis of covalent triazine-based frameworks with high CO 2 adsorption and selectivity, Polym. Chem. 6 (2015) 7410-7417.

DOI: 10.1039/c5py01090j

Google Scholar

[7] P. Katekomol, J. Roeser, M. Bojdys, J. Weber, A. Thomas, Covalent triazine frameworks prepared from 1,3,5-Tricyanobenzene, Chem. Mater. 25 (2013) 1542-1548.

DOI: 10.1021/cm303751n

Google Scholar

[8] P. Kuhn, M. Antonietti, A. Thomas, Porous covalent triazine-based frameworks prepared by ionothermal synthesis, Angew. Chem. Int. Ed. 47 (2008) 3450-3453.

DOI: 10.1002/anie.200705710

Google Scholar

[9] P. Kuhn, A. Forget, D. Su, A. Thomas, M. Antonietti, From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks, J. Am. Chem. Soc. 130 (2008) 13333-13337.

DOI: 10.1021/ja803708s

Google Scholar

[10] D.Y. Osadchii, A.I. Olivos-Suarez, A.V. Bavykina, J. Gascon, Revisiting nitrogen species in covalent triazine frameworks, Langmuir. 33 (2017) 14278-14285.

DOI: 10.1021/acs.langmuir.7b02929

Google Scholar

[11] L.J. Abbott, K.E. Hart, C.M. Colina, Polymatic: a generalized simulated polymerization algorithm for amorphous polymers, Theor. Chem. Acc. 132 (2013) 1321-1334.

DOI: 10.1007/s00214-013-1334-z

Google Scholar

[12] L.J. Abbott, C.M. Colina, Atomistic structure generation and gas adsorption simulations of microporous polymer networks, Macromolecules. 44 (2011) 4511-4519.

DOI: 10.1021/ma200303p

Google Scholar

[13] S.J. Rukmani, T.P. Liyana-Arachchi, K.E. Hart, C.M. Colina, Ionic-functionalized polymers of intrinsic microporosity for gas separation Aapplications, Langmuir. 34 (2018) 3949-3960.

DOI: 10.1021/acs.langmuir.7b04320

Google Scholar

[14] P. Fayon, A. Trewin, Formation mechanism of ultra porous framework materials, Phys. Chem. Chem. Phys. 18 (2016) 16840-16847.

DOI: 10.1039/c6cp02764d

Google Scholar

[15] P. Fayon, J.M.H. Thomas, A. Trewin, Structure and properties of a nanoporous supercapacitor, J. Phys. Chem. C. 120 (2016) 25880-25891.

DOI: 10.1021/acs.jpcc.6b08712

Google Scholar

[16] C. Reece, D.J. Willock, A. Trewin, Modelling analysis of the structure and porosity of covalent triazine-based frameworks, Phys. Chem. Chem. Phys. 17 (2015) 817-823.

DOI: 10.1039/c4cp04046e

Google Scholar

[17] S. Jiang, K.E. Jelfs, D. Holden, T. Hasell, S.Y. Chong, M. Haranczyk, A.Trewin, A.I. Cooper, Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids, J. Am. Chem. Soc. 135 (2013) 17818-17830.

DOI: 10.1021/ja407374k

Google Scholar

[18] T. Düren, F. Millange, G. Férey, K.S. Walton, R.Q. Snurr. Calculating geometric surface areas as a characterization tool for metal-organic frameworks, J. Phys. Chem. C. 111 (2007) 15350-15356.

DOI: 10.1021/jp074723h

Google Scholar

[19] L.D. Gelb, K.E. Gubbins, Characterization of porous glasses: Simulation models, adsorption isotherms, and the Brunauer-Emmett-Teller analysis method, Langmuir. 14 (1998) 2097-2111.

DOI: 10.1021/la9710379

Google Scholar

[20] M. Pinheiro, R.L. Martin, C.H. Rycroft, A. Jonesc, E. Iglesia, M. Haranczyk, Characterization and comparison of pore landscapes in crystalline porous materials, J. Mol. Graph. 44 (2013) 208-219.

DOI: 10.1016/j.jmgm.2013.05.007

Google Scholar