Thermal Decomposition Kinetics of Flame Retardant Polybutylene Terephthalate Matrix Composites

Article Preview

Abstract:

The thermal decomposition kinetics of polybutylene terephthalate (PBT) and flame-retardant PBT (FR-PBT) were investigated by thermogravimetric analysis at various heating rates. The kinetic parameters were determined by using Kissinger, Flynn-Wall-Ozawa and Friedman methods. The y (α) and z (α) master plots were used to identify the thermal decomposition model. The results show that the rate of residual carbon of FR-PBT is higher than that of PBT and the maximum mass loss rate of FR-PBT is lower than that of PBT. The values of activation energy of PBT (208.71 kJ/mol) and FR-PBT (244.78 kJ/mol) calculated by Kissinger method were higher than those of PBT (PBT: 195.54 kJ/mol) and FR-PBT (FR-PBT: 196.00 kJ/mol) calculated by Flynn-Wall-Ozawa method and those of PBT and FR-PBT (PBT: 199.10 kJ/mol, FR-PBT: 206.03 kJ/mol) calculated by Friedman methods. There is a common thing that the values of activation energy of FR-PBT are higher than that of PBT in different methods. The thermal decomposition reaction models of the PBT and FR-PBT can be described by Avarami-Erofeyev model (A1).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-191

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Al-Mulla, M. Johnson, Y. Shu-Kai, Nonisothermal crystallization kinetics of PBT nanocomposites, Composites. Part A. 39(2) (2008) 204-217.

DOI: 10.1016/j.compositesa.2007.11.001

Google Scholar

[2] S. Brehme, B. Schartel, J. Goebbels, Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate) (PBT): Flame retardancy performance and mechanisms, Polym. Degrad. Stab. 96(5) (2011) 875-884.

DOI: 10.1016/j.polymdegradstab.2011.01.035

Google Scholar

[3] E. Gallo, U. Braun, B. Schartel, Halogen-free flame retarded poly (butylene terephthalate) (PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate, Polym. Degrad. Stab. 94(8) (2009) 1245-1253.

DOI: 10.1016/j.polymdegradstab.2009.04.014

Google Scholar

[4] V.I. Babushok, P. Deglmann, R. Krämer, Influence of antimony-halogen additives on flame propagation, Combust. Sci. Technol. 189(2) (2016) 290-311.

DOI: 10.1080/00102202.2016.1208187

Google Scholar

[5] X.N. Xu, Study on properties of PBT flame retarded by brominated epoxy resin synchronized with antimony trioxide, Plastics Science and Technology. 37(07) (2009) 33-36.

Google Scholar

[6] J.L. Xu, S.G. Zhou, L. Niu, Preparation and flame retardancy of Sb2O3 /polyvinyl chloride composites, Trans. Mater. Heat Treat. 36(11) (2015) 1-6.

Google Scholar

[7] K.S. Dong, S.P. Sang, H.J. Wang, Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species, J. Anal. Appl. Pyrolysis. 89(1) (2010) 66-73.

DOI: 10.1016/j.jaap.2010.05.008

Google Scholar

[8] L. Shi, Q. Liu, X. Guo, Pyrolysis behavior and bonding information of coal — A TGA study, Fuel Process. Technol. 108(6) (2013) 125-132.

DOI: 10.1016/j.fuproc.2012.06.023

Google Scholar

[9] R. Mehrabian, R. Scharler, I. Obernberger, Effects of pyrolysis conditions on the heating rate in biomass particles and applicability of TGA kinetic parameters in particle thermal conversion modelling, Fuel. 93(1) (2012) 567-575.

DOI: 10.1016/j.fuel.2011.09.054

Google Scholar

[10] P. Šimon, P. Thomas, T. Dubaj, The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences, J. Therm. Anal. Calorim. 115(1) (2014) 853-859.

DOI: 10.1007/s10973-013-3459-7

Google Scholar

[11] S. Vyazovkin, Isoconversional kinetics of polymers: The decade past, Macromol. Rapid Commun. 38(3) (2017).

DOI: 10.1002/marc.201600615

Google Scholar

[12] P. Simon, Isoconversional methods: Fundamentals, meaning and application, J. Therm. Anal. Calorim. 76(1) (2004) 123-132.

Google Scholar

[13] F. Carrasco, L.A. Pérez-Maqueda, P.E. Sánchez-Jiménez, Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid) driven by random scission, Polym. Test. 32(5) (2013) 937-945.

DOI: 10.1016/j.polymertesting.2013.04.013

Google Scholar

[14] S. Majoni, A. Chaparadza, Thermal degradation kinetic study of polystyrene/organophosphate composite, Thermochim. Acta. 662 (2018) 8-15.

DOI: 10.1016/j.tca.2018.02.001

Google Scholar

[15] J.L. Xu, W.L. Yang, L. Niu, Study on the surface modification of Sb2O3 nanoparticles by using mechanochemical method, Inorg. Nano-Met. Chem. 47(5) (2016) 697-702.

Google Scholar

[16] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11) (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[17] L.G. Lu, S.S. Yang, Y. Zhang, Synthese and thermal decomposition kinetics of novel flame retardant 1,3,5-tris(5,5-dimethyl-1,3-dioxa-2-oxophosphorinanyl-2-oxy)benzene, Acta Chim. Sinica. 67(14) (2009) 1695-1699.

Google Scholar

[18] H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to a phenolic plastic, J. Polym. Sci., Part C: Polym. Symp. 6(1) (1964) 183-195.

DOI: 10.1002/polc.5070060121

Google Scholar

[19] J. Málek, The kinetic analysis of non-isothermal data, Thermochim. Acta. 200(92) (1992) 257-269.

DOI: 10.1016/0040-6031(92)85118-f

Google Scholar

[20] S. Vyazovkin, A.K. Burnham, J.M. Criado, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta. 520(1) (2011) 1-19.

DOI: 10.1016/j.tca.2011.03.034

Google Scholar

[21] J. Málek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta. 267(95) (1995) 61-73.

DOI: 10.1016/0040-6031(95)02466-2

Google Scholar

[22] A. Singh, P.K. Soni, M. Singh, Thermal degradation, kinetic and correlation models of poly (vinylidene fluoride–chlorotrifluoroetheylene) copolymers, Thermochim. Acta. 548(44) (2012) 88-92.

DOI: 10.1016/j.tca.2012.08.031

Google Scholar

[23] R. Ren, J. Chen, G. Li, Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model, Bioresour Technol. 261(2018) 403-411.

DOI: 10.1016/j.biortech.2018.04.047

Google Scholar

[24] W.L. Yang, J.L. Xu, L. Niu, Effects of high energy ball milling on mechanical and interfacial properties of PBT/nano-Sb2O3 composites, J. Adhes. Sci. Technol. (2017) 1-11.

Google Scholar

[25] H.S. Tai, C.H. Su, Kinetic analysis of thermal degradation of polypropylene using a modified gompertz model, J. Hazard., Toxic Radioact. Waste. 16(1) (2012) 39-50.

DOI: 10.1061/(asce)hz.2153-5515.0000095

Google Scholar

[26] L. Abate, I. Blanco, F.A. Bottino, Kinetic study of the thermal degradation of PS/MMT nanocomposites prepared with imidazolium surfactants, J. Therm. Anal. Calorim. 91(3) (2008) 681-686.

DOI: 10.1007/s10973-007-8577-7

Google Scholar

[27] I. Blanco, F.A. Bottino, Kinetics of degradation and thermal behaviour of branched hepta phenyl POSS/PS nanocomposites, Polym. Degrad. Stab. 129 (2016) 374-379.

DOI: 10.1016/j.polymdegradstab.2016.05.005

Google Scholar

[28] M.A. Islam, M. Asif, B.H. Hameed, Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis, Bioresour Technol. 179 (2015) 227-233.

DOI: 10.1016/j.biortech.2014.11.115

Google Scholar

[29] R. Kaur, P. Gera, M.K. Jha, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis, Bioresour Technol. 250 (2017) 422-428.

DOI: 10.1016/j.biortech.2017.11.077

Google Scholar

[30] H. Wang, Z. Chen, X. Zhang, Thermal decomposition mechanisms of coal and coal chars under CO2, atmosphere using a distributed activation energy model, Thermochim. Acta. 662 (2018) 41-46.

DOI: 10.1016/j.tca.2018.02.005

Google Scholar