Designing, Manufacturing and FEA Analyzing of a Intervertebral Disc Made from UHMWPE

Article Preview

Abstract:

The paper presents a series of aspects regarding the design, manufacturing (through Rapid Prototyping) and FEA analysis of an intervertebral disk made from UHMWPE. In the first part are presented the most used model existing on the market. The CAD model and Finite Element Analysis (FEA) of the intervertebral disc (IVD) were made using the SolidWorks program. As a material, UHMWPE has been preferred due to good mechanical and biocompatibility characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-436

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Xin, R. Guo, R. Li, M. Zhang, Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method, Acta of Bioengineering and Biomechanics, Vol. 18, No. 2, (2016).

Google Scholar

[2] J.L. Smith, L. Nandan L. Nerurkar, Kyung-Suk Choi, Brian D. Harfe, and Dawn M. Elliott, Degeneration and regeneration of the intervertebral disc: lessons from development, Disease Models & Mechanisms 4, 31-41 (2011).

DOI: 10.1242/dmm.006403

Google Scholar

[3] A.F. De Palma, R.H. Rothman, The Intervertebral disc, W.B. Saunders Company, Philadelphia, London, Toronto, (1970).

Google Scholar

[4] C.J.M. Jongeneelen, Biomechanics in the intervertebral disc. A literature review, Eindhoven University of Technology, Department of Biomedical Engineering, pp.3-5, (2006).

Google Scholar

[5] J. Urban, A. Maroudas, M.T. Bayliss, J. Dillon, Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology, 16:447-464, (1979).

DOI: 10.3233/bir-1979-16609

Google Scholar

[6] G. B. Houben, M. R. Drost, J. M. Huyghe, J. D. Janssen, and A. Huson. Nonhomogeneous permeability of canine anulus fibrosus. Spine, 22:7-16, (1997).

DOI: 10.1097/00007632-199701010-00003

Google Scholar

[7] M. Stoeckelhuber, S. Brueckner, G. Spohr, U. Welsch. Proteoglycans and collagen in the intervertebral disc of the rhesus monkey, Annals of Anatomy, 187:35-42, (2005).

DOI: 10.1016/j.aanat.2004.08.007

Google Scholar

[8] M. T. Bayliss, B. Johnstone. The lumbar spine and back pain, chapter 7 in: Biochemistry of the intervertebral disc,. Churchill Livingstone, fourth edition edition, (1992) pp.111-127.

Google Scholar

[9] S. Roberts, J. Menage, V. Duance, S. Wotton, S. Ayad. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine, 16(9):1030-1038, (1991).

DOI: 10.1097/00007632-199109000-00003

Google Scholar

[10] A. Shirazi-Adl, S.C. Shrivastava, and Ahmed A.M. Stress analysis of the lumbar disc-body unit in compression: a three-dimensional nonlinear finite element study. Spine, 9:120-134, (1984).

DOI: 10.1097/00007632-198403000-00003

Google Scholar

[11] C. A. Niosi, T. R. Oxland, Degenerative mechanics of the lumbar spine. The Spine Journal, 4:202S-208S, (2004).

DOI: 10.1016/j.spinee.2004.07.013

Google Scholar

[12] A.S. Howard, P.A. Anderson, V.M. Haughton, JC. Iatridis, JD. Kang, JC. Lotz, RN. Natarajan, TR. Oegema, P Roughley. Disc degeneration: Summary. Spine, 29(23):2677-2678, (2004).

DOI: 10.1097/01.brs.0000147573.88916.c6

Google Scholar

[13] J.P.G. Urban, S. Roberts. Degeneration of the intervertebral disc. Arthritis Research & Therapy, 5(63):120-130, (2003).

Google Scholar

[14] M.H. Walker, D.G. Anderso,. Molecular basis of intervertebral disc degeneration. The Spine Journal, 4:158S-166S, (2004).

Google Scholar

[15] M.A. Adams, D.S. McNally, P. Dolan, Stress distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972 (1996).

DOI: 10.1302/0301-620x.78b6.0780965

Google Scholar

[16] C.S Shim, SH Lee, et al. Partial Disc Replacement with the PDN Prosthetic Disc Nucleus Device. J Spinal Disorders & Techniques. 16(4): 324-330, (2003).

DOI: 10.1097/00024720-200308000-00003

Google Scholar

[19] P. McAfee, IL. Fedder, et al. SB Charité Disc Replacement: Report of 60 Prospective Randomized Cases in a U.S. Center." Journal of Spinal Disorders & Techniques. 16(4): 424-433 (2003).

DOI: 10.1097/00024720-200308000-00016

Google Scholar

[20] Food and Drug Administration, FDA Approves Artificial Disc; Another Alternative to Treat Low Back Pain. FDA Talk Paper. (2004) T04-45. Available at http://www.fda.gov/bbs/topics/ANSWERS/2004/ANS01320.html (accessed on October 2, 2018).

DOI: 10.31525/fda2-ucm624226.htm

Google Scholar

[21] D. Cotoros., Analysis of Skeletal Prosthesis Component Elements at Structural Level, Metalurgia International, Volume: 15, Special Issue: 7, pp.116-120, (2010).

Google Scholar

[22] HS Lin, YH Liu, KH Adams., Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J. Bone Joint Surg.Am. 60:41-55 (1978).

DOI: 10.2106/00004623-197860010-00006

Google Scholar

[23] S Asano, K Kaneda, S Umehara., The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements. Spine, 17:1343-52 (1992).

DOI: 10.1097/00007632-199211000-00014

Google Scholar

[24] R. Miclaus, A. Repanovici, N. Roman, Biomaterials: Polylactic Acid and 3D Printing Processes for Orthosis and Prosthesis, Rev. Materiale Plastice , Nr. 1, (2017).

DOI: 10.37358/mp.17.1.4794

Google Scholar

[25] E. Popescu, Lumbar disc prosthesis, license project, Transilvanioa Univ. Of Brasov, (2014).

Google Scholar