[1]
L. Xin, R. Guo, R. Li, M. Zhang, Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method, Acta of Bioengineering and Biomechanics, Vol. 18, No. 2, (2016).
Google Scholar
[2]
J.L. Smith, L. Nandan L. Nerurkar, Kyung-Suk Choi, Brian D. Harfe, and Dawn M. Elliott, Degeneration and regeneration of the intervertebral disc: lessons from development, Disease Models & Mechanisms 4, 31-41 (2011).
DOI: 10.1242/dmm.006403
Google Scholar
[3]
A.F. De Palma, R.H. Rothman, The Intervertebral disc, W.B. Saunders Company, Philadelphia, London, Toronto, (1970).
Google Scholar
[4]
C.J.M. Jongeneelen, Biomechanics in the intervertebral disc. A literature review, Eindhoven University of Technology, Department of Biomedical Engineering, pp.3-5, (2006).
Google Scholar
[5]
J. Urban, A. Maroudas, M.T. Bayliss, J. Dillon, Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology, 16:447-464, (1979).
DOI: 10.3233/bir-1979-16609
Google Scholar
[6]
G. B. Houben, M. R. Drost, J. M. Huyghe, J. D. Janssen, and A. Huson. Nonhomogeneous permeability of canine anulus fibrosus. Spine, 22:7-16, (1997).
DOI: 10.1097/00007632-199701010-00003
Google Scholar
[7]
M. Stoeckelhuber, S. Brueckner, G. Spohr, U. Welsch. Proteoglycans and collagen in the intervertebral disc of the rhesus monkey, Annals of Anatomy, 187:35-42, (2005).
DOI: 10.1016/j.aanat.2004.08.007
Google Scholar
[8]
M. T. Bayliss, B. Johnstone. The lumbar spine and back pain, chapter 7 in: Biochemistry of the intervertebral disc,. Churchill Livingstone, fourth edition edition, (1992) pp.111-127.
Google Scholar
[9]
S. Roberts, J. Menage, V. Duance, S. Wotton, S. Ayad. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine, 16(9):1030-1038, (1991).
DOI: 10.1097/00007632-199109000-00003
Google Scholar
[10]
A. Shirazi-Adl, S.C. Shrivastava, and Ahmed A.M. Stress analysis of the lumbar disc-body unit in compression: a three-dimensional nonlinear finite element study. Spine, 9:120-134, (1984).
DOI: 10.1097/00007632-198403000-00003
Google Scholar
[11]
C. A. Niosi, T. R. Oxland, Degenerative mechanics of the lumbar spine. The Spine Journal, 4:202S-208S, (2004).
DOI: 10.1016/j.spinee.2004.07.013
Google Scholar
[12]
A.S. Howard, P.A. Anderson, V.M. Haughton, JC. Iatridis, JD. Kang, JC. Lotz, RN. Natarajan, TR. Oegema, P Roughley. Disc degeneration: Summary. Spine, 29(23):2677-2678, (2004).
DOI: 10.1097/01.brs.0000147573.88916.c6
Google Scholar
[13]
J.P.G. Urban, S. Roberts. Degeneration of the intervertebral disc. Arthritis Research & Therapy, 5(63):120-130, (2003).
Google Scholar
[14]
M.H. Walker, D.G. Anderso,. Molecular basis of intervertebral disc degeneration. The Spine Journal, 4:158S-166S, (2004).
Google Scholar
[15]
M.A. Adams, D.S. McNally, P. Dolan, Stress distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972 (1996).
DOI: 10.1302/0301-620x.78b6.0780965
Google Scholar
[16]
C.S Shim, SH Lee, et al. Partial Disc Replacement with the PDN Prosthetic Disc Nucleus Device. J Spinal Disorders & Techniques. 16(4): 324-330, (2003).
DOI: 10.1097/00024720-200308000-00003
Google Scholar
[19]
P. McAfee, IL. Fedder, et al. SB Charité Disc Replacement: Report of 60 Prospective Randomized Cases in a U.S. Center." Journal of Spinal Disorders & Techniques. 16(4): 424-433 (2003).
DOI: 10.1097/00024720-200308000-00016
Google Scholar
[20]
Food and Drug Administration, FDA Approves Artificial Disc; Another Alternative to Treat Low Back Pain. FDA Talk Paper. (2004) T04-45. Available at http://www.fda.gov/bbs/topics/ANSWERS/2004/ANS01320.html (accessed on October 2, 2018).
DOI: 10.31525/fda2-ucm624226.htm
Google Scholar
[21]
D. Cotoros., Analysis of Skeletal Prosthesis Component Elements at Structural Level, Metalurgia International, Volume: 15, Special Issue: 7, pp.116-120, (2010).
Google Scholar
[22]
HS Lin, YH Liu, KH Adams., Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J. Bone Joint Surg.Am. 60:41-55 (1978).
DOI: 10.2106/00004623-197860010-00006
Google Scholar
[23]
S Asano, K Kaneda, S Umehara., The mechanical properties of the human L4-5 functional spinal unit during cyclic loading. The structural effects of the posterior elements. Spine, 17:1343-52 (1992).
DOI: 10.1097/00007632-199211000-00014
Google Scholar
[24]
R. Miclaus, A. Repanovici, N. Roman, Biomaterials: Polylactic Acid and 3D Printing Processes for Orthosis and Prosthesis, Rev. Materiale Plastice , Nr. 1, (2017).
DOI: 10.37358/mp.17.1.4794
Google Scholar
[25]
E. Popescu, Lumbar disc prosthesis, license project, Transilvanioa Univ. Of Brasov, (2014).
Google Scholar