Evaluation of Catalysts Mordenite and MoO3/Mordenite in the Production of Biodiesel

Article Preview

Abstract:

The world's energy production is generated mainly from fossil fuels, so it is important to develop fuels from renewable sources. Growing caution with the environmental impact imposes restrictions on emissions from the combustion of fossil fuels. With increasing human population and expanding economies in both developing and developed countries, there is an increase in energy consumption and production. The need arises to supply this high energy production with a renewable and reliable source fuel [1]. These facts have stimulated research by alternative sources for the development of renewable fuels. One of the most promising fuels is biodiesel, an alternative to petroleum diesel from high-quality renewable sources, which allows the replacement of fossil diesel oil without modifications to the vehicle's engine [2, 3]. In recent years, methyl esters of fatty acids derived from vegetable oil have gained considerable attention as alternative fuel [4, 5].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.M. Doyle, Z.T. Alismaeel, T.M. Albayati, A.S. Abbas: Fuel Vol. 199 (2017), p.394.

Google Scholar

[2] C.C. Enweremadu, M.M. Mbarawa: Renew. Sust. Energ. Rev. Vol. 13 (2009), p.2205.

Google Scholar

[3] D.Y.C. Leung, X. Wu, M.K.H. Leung: Appl. Energ. Vol. 87 (2010), p.1083.

Google Scholar

[4] M. Atadashi, A. Aroua, N.A. Sulaiman: Renew. Sust. Energ. Rev. Vol. 15 (2011), p.5051.

Google Scholar

[5] X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli: Renew. Energ. Vol. 55 (2013), p.392.

Google Scholar

[6] M. Guisnet., F.R. Ribeiro: Zeólitos: Um Nanomundo ao Serviço da Catálise. (Fundação Calouste Gulbenkian Lisboa, 2004).

Google Scholar

[7] P. Intarapong, S. Iangthanarata, P. Phanthonga, A. Luengnaruemitchaia, S. Jai-In: J. Energy Chem. Vol. 22 (2013), p.690.

Google Scholar

[8] G.J. Kim., W.S. Ahn: Zeolites Vol. 11 (1991), p.745.

Google Scholar

[9] T. Sano, S. Wakabayashi, Y. Oumi, T. Uozumi: Micropor. Mesopor. Mater. Vol. 46 (2001), p.67.

Google Scholar

[10] M. Campanati, G. Fornasari, A. Vaccari: Catal. Today Vol. 77 (2003), p.299.

Google Scholar

[11] J.J. Rodrigues, J.C. Marinho, R.S. Eduardo, E.G. Lima, M.G.F. Rodrigues: Braz. J. Pet. Gas Vol. 9 (2015), p.11.

Google Scholar

[12] M.M. Mohamed, T.M. Salama, I. Othman, I.A. Ellah: Micropor. Mesopor. Mater. Vol. 84 (2005), p.84.

Google Scholar

[13] M. Stratakis, H. Garcia: Chem. Rev. Vol. 112 (2012), p.4469.

Google Scholar

[14] R. Jana, T.P. Pathak, M.S. Sigman: Chem. Rev. Vol. 111 (2011), p.1417.

Google Scholar

[15] J.A. Rabo: Zeolite Chemistry and Catalysis. (ACS Monograph Series 171 2nd ed. American Chemical Society, 1976).

Google Scholar

[16] T.L.A. Barbosa, E.G. Lima, M.G.F. Rodrigues, Preparação dos catalisadores (zeólita NaA e MoNaA) aplicados na reação de transesterificação do óleo de soja, XXV Congreso Iberoamericano de Catálisis, Montevideo, Uruguay, (2016).

DOI: 10.17648/pdpetro-2022-159404

Google Scholar

[17] F.M.N. Silva, E.G. Lima, J.C. Marinho M.G.F. Rodrigues, Síntese, caracterização e aplicação dos catalisadores NaMOR e MoNaMOR na reação de transesterificação do óleo de girassol, XXV Congreso Iberoamericano de Catálisis. Montevidéu de 18 a 23 de Setembro de 2016. Proceeding... Montevidéu 2016. (UY).

DOI: 10.5151/cobeq2018-co.163

Google Scholar