[1]
European Commission, Report on Critical raw materials for the EU, DG Grow, Brussels (2017).
Google Scholar
[2]
USGS, Mineral Commidity Summary, Reston, Virginia, USA (2015).
Google Scholar
[3]
E. Alonso, J. Gregory, F. Field, R. Kirchain, Material Availability and the Supply Chain: Risks, Effects, and Responses, Environ. Sci. Technol. 2007, 41 (19), 6649 – 6656.
DOI: 10.1021/es070159c
Google Scholar
[4]
C. Helbig, A. M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, Supply risks associated with lithium-ion battery materials, Journal of Cleaner Production 2018, 172, 274 – 286.
DOI: 10.1016/j.jclepro.2017.10.122
Google Scholar
[5]
E. A. Olivetti, G. Ceder, G. G. Gaustad, X. Fu, Lithium-Ion Battery Supply Chain Considerations, Joule 2017, 1 (2), 229 – 243.
DOI: 10.1016/j.joule.2017.08.019
Google Scholar
[6]
C. Hagelüken, in Strategische Rohstoffe - Risikovorsorge (Eds: P. Kausch, M. Bertau, J. Gutzmer, J. Matschullat), Springer Spektrum. Berlin (2014).
DOI: 10.1007/978-3-642-39704-2
Google Scholar
[7]
M. Reuter, A. van Schaik, Opportunities and limits of recycling: A dynamic-model-based analysis, MRS Bulletin 2012, 37 (04), 339 – 347.
DOI: 10.1557/mrs.2012.57
Google Scholar
[8]
E. Müller, L. M. Hilty, R. Widmer, M. Schluep, M. Faulstich, Modeling metal stocks and flows: a review of dynamic material flow analysis methods, Environmental science & technology 2014, 48 (4), 2102 – 2113.
DOI: 10.1021/es403506a
Google Scholar
[9]
W.-Q. Chen, T. E. Graedel, Anthropogenic Cycles of the Elements: A Critical Review, Environ. Sci. Technol. 2012, 46 (16), 8574 – 8586.
DOI: 10.1021/es3010333
Google Scholar
[10]
S. Glöser-Chahoud, M. Pfaff, M. Soulier, in Proceedings of the 34th International Conference of the System Dynamics Society, Delft, The Netherlands (2016).
Google Scholar
[11]
S. Glöser-Chahoud, J. Hartwig, I. D. Wheat, M. Faulstich, The cobweb theorem and delays in adjusting supply in metals' markets, Syst. Dyn. Rev. 2016, 32 (3-4), 279 – 308.
DOI: 10.1002/sdr.1565
Google Scholar
[12]
S. Glöser-Chahoud, M. Pfaff, Tercero Espinoza, Luis: Faulstich, Martin, in Rohstoffeffizienz und Rohstoffinnovationen: Band 4 (Eds: U. Teipel, A. Reller), Fraunhofer IRB Verlag. Stuttgart (2016).
Google Scholar
[13]
Eurostat, NACE Rev. 2: Statistical classification of economic activities in the European Community, Eurostat. Theme, General and regional statistics. Methodologies and working papers, Office for Official Publications of the European Communities, Luxembourg (2008).
DOI: 10.1787/9789264041882-en
Google Scholar
[14]
M. Soulier, S. Glöser-Chahoud, D. Goldmann, L. A. Tercero Espinoza, Dynamic analysis of European copper flows, Resources, Conservation and Recycling 2018, 129, 143 – 152.
DOI: 10.1016/j.resconrec.2017.10.013
Google Scholar
[15]
H. Buchner, D. Laner, H. Rechberger, J. Fellner, In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency, Resources, Conservation and Recycling 2014, 93, 112 – 123.
DOI: 10.1016/j.resconrec.2014.09.016
Google Scholar
[16]
S. Glöser-Chaoud, Quantitative Analyse der Kritikalität mineralischer und metallischer Rohstoffe unter Verwendung eines systemdynamischen Modell-Ansatzes, TU Clausthal (2017).
Google Scholar
[17]
E. M. Harper, G. Kavlak, T. E. Graedel, Tracking the Metal of the Goblins: Cobalt's Cycle of Use, Environ. Sci. Technol. 2012, 46 (2), 1079 – 1086.
DOI: 10.1021/es201874e
Google Scholar
[18]
C. Gandenberger, S. Glöser, F. Marscheider-Weidemann, K. Ostertag, R. Walz, Die Versorgung der deutschen Wirtschaft mit Roh- und Werkstoffen für Hochtechnologien: Präzisierung und Weiterentwicklung der deutschen Rohstoffstrategie, Arbeitsbericht, Vol. 150, Büro für Technikfolgenabschätzung beim deutschen Bundestag, Berlin (2012).
DOI: 10.1515/9783486790382-020
Google Scholar
[19]
P. Sommer, V. S. Rotter, M. Ueberschaar, Battery related cobalt and REE flows in WEEE treatment, Waste management (New York, N.Y.) (2015).
DOI: 10.1016/j.wasman.2015.05.009
Google Scholar
[20]
I. Porri, Cobalt Facts, Brussels 2006-2016.
Google Scholar
[21]
P. Novinsky, S. Glöser, A. Kühn, R. Walz, in Proceedings of the 32nd International Conference of the System Dynamics Society, Delft, Netherlands (2014).
Google Scholar
[22]
BIO by Deloitte (2015): Study on data for a raw material system analysis: roadmap and test of the fully operational MSA for raw materials - Prepared for the European Commission, DG GROW, (2015).
Google Scholar
[23]
Minerals4EU, European minerals yearbook: - data for cobalt., Brussels (2014).
Google Scholar
[24]
F. O. Ongondo, I. D. Williams, Mobile phone collection, reuse and recycling in the UK, Waste management (New York, N.Y.) 2011, 31 (6), 1307 – 1315.
DOI: 10.1016/j.wasman.2011.01.032
Google Scholar
[25]
M. Polák, L. Drápalová, Estimation of end of life mobile phones generation, Waste management (New York, N.Y.) 2012, 32 (8), 1583 – 1591.
DOI: 10.1016/j.wasman.2012.03.028
Google Scholar
[26]
O. Gantner, J. Grimm, Hutner, Petra, Lubberger, Ariane, Wissenschaftliche Begleitung der Althandy-Sammelaktion Handy clever entsorgen,, Universität Augsburg (2013).
Google Scholar
[27]
C. Hagelüken, Lagerstätten auf Rädern, ReSource 2010 (3), 30 – 33.
Google Scholar
[28]
T. Elwert, D. Goldmann, F. Römer, M. Buchert, C. Merz, D. Schueler, J. Sutter, Current Developments and Challenges in the Recycling of Key Components of (Hybrid) Electric Vehicles, Recycling 2016, 1 (1), 25 – 60.
DOI: 10.3390/recycling1010025
Google Scholar
[29]
ADAC Fahrzeugtechnik, Elektroautos: Marktübersicht/Kenndaten, München (2015).
Google Scholar
[30]
C. Graf, in Handbuch Lithium-Ionen-Batterien, SpringerLink Bücher (Eds: R. Korthauer), Imprint: Springer Vieweg. Berlin, Heidelberg (2013).
Google Scholar
[31]
S. Leuthner, in Handbuch Lithium-Ionen-Batterien, SpringerLink Bücher (Eds: R. Korthauer), Imprint: Springer Vieweg. Berlin, Heidelberg (2013).
Google Scholar
[32]
C. Pillot, The Worldwide Rechargeable Battery Market 2015-2025: Market Report avicenne Energy, France (2015).
Google Scholar
[33]
M. Reuter, C. Hudson, A. van Schaik, K. Heiskanen, C. Meskers, C. Hagelüken, Metal Recycling: Opportunities, Limits, Infrastructure, United Nations Environment Programme, Nairobi, Kenya (2013).
Google Scholar
[34]
K. Sander, S. Schilling, Transboundary shipment of waste electrical and electronic equipment / electronic scrap --Optimization of material flows and control, Berlin (2010).
Google Scholar
[35]
P. Chancerel, Substance flow analysis of the recycling of small waste electrical and electronic equipment: An assessment of the recovery of gold and palladium, Dissertation, TU Berlin.
Google Scholar