Potential Contribution of Secondary Materials to Overall Supply - The Example of the European Cobalt Cycle

Article Preview

Abstract:

Higher efficiency in raw material recycling is discussed as a key strategy to decrease the environmental impact of resource consumption and to improve materials’ availability in order to mitigate supply risks. However, particularly in the case of technology metals, demand is driven by specific emerging technologies from which recycling will not be possible before the end of their useful lifetimes. Hence, the availability of secondary materials is limited by the amount of obsolete products as well as their collection, separation and treatment during waste management and recycling. In this paper, we present the results of a dynamic material flow model for cobalt as a key raw material for lithium-ion batteries at an European level (EU28). This model aims at quantifying the current state of recycling and future recycling potentials from end-of-life (EoL) product flows. While it is expectable that obsolete large battery packs from (hybrid) electric vehicles will be efficiently collected in future, EoL Li-ion battery flows will remain dominated by smaller electronic equipment (smartphones, laptops etc.) in the coming years and the model results show a significant potential for improvements in collection and material recovery from EoL batteries in Europe. A major challenge will be the collection of smaller batteries and Waste Electrical and Electronic Equipment (WEEE) in general from which a significant share of total European cobalt demand could be recovered in the coming years.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-21

Citation:

Online since:

June 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Commission, Report on Critical raw materials for the EU, DG Grow, Brussels (2017).

Google Scholar

[2] USGS, Mineral Commidity Summary, Reston, Virginia, USA (2015).

Google Scholar

[3] E. Alonso, J. Gregory, F. Field, R. Kirchain, Material Availability and the Supply Chain: Risks, Effects, and Responses, Environ. Sci. Technol. 2007, 41 (19), 6649 – 6656.

DOI: 10.1021/es070159c

Google Scholar

[4] C. Helbig, A. M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, Supply risks associated with lithium-ion battery materials, Journal of Cleaner Production 2018, 172, 274 – 286.

DOI: 10.1016/j.jclepro.2017.10.122

Google Scholar

[5] E. A. Olivetti, G. Ceder, G. G. Gaustad, X. Fu, Lithium-Ion Battery Supply Chain Considerations, Joule 2017, 1 (2), 229 – 243.

DOI: 10.1016/j.joule.2017.08.019

Google Scholar

[6] C. Hagelüken, in Strategische Rohstoffe - Risikovorsorge (Eds: P. Kausch, M. Bertau, J. Gutzmer, J. Matschullat), Springer Spektrum. Berlin (2014).

DOI: 10.1007/978-3-642-39704-2

Google Scholar

[7] M. Reuter, A. van Schaik, Opportunities and limits of recycling: A dynamic-model-based analysis, MRS Bulletin 2012, 37 (04), 339 – 347.

DOI: 10.1557/mrs.2012.57

Google Scholar

[8] E. Müller, L. M. Hilty, R. Widmer, M. Schluep, M. Faulstich, Modeling metal stocks and flows: a review of dynamic material flow analysis methods, Environmental science & technology 2014, 48 (4), 2102 – 2113.

DOI: 10.1021/es403506a

Google Scholar

[9] W.-Q. Chen, T. E. Graedel, Anthropogenic Cycles of the Elements: A Critical Review, Environ. Sci. Technol. 2012, 46 (16), 8574 – 8586.

DOI: 10.1021/es3010333

Google Scholar

[10] S. Glöser-Chahoud, M. Pfaff, M. Soulier, in Proceedings of the 34th International Conference of the System Dynamics Society, Delft, The Netherlands (2016).

Google Scholar

[11] S. Glöser-Chahoud, J. Hartwig, I. D. Wheat, M. Faulstich, The cobweb theorem and delays in adjusting supply in metals' markets, Syst. Dyn. Rev. 2016, 32 (3-4), 279 – 308.

DOI: 10.1002/sdr.1565

Google Scholar

[12] S. Glöser-Chahoud, M. Pfaff, Tercero Espinoza, Luis: Faulstich, Martin, in Rohstoffeffizienz und Rohstoffinnovationen: Band 4 (Eds: U. Teipel, A. Reller), Fraunhofer IRB Verlag. Stuttgart (2016).

Google Scholar

[13] Eurostat, NACE Rev. 2: Statistical classification of economic activities in the European Community, Eurostat. Theme, General and regional statistics. Methodologies and working papers, Office for Official Publications of the European Communities, Luxembourg (2008).

DOI: 10.1787/9789264041882-en

Google Scholar

[14] M. Soulier, S. Glöser-Chahoud, D. Goldmann, L. A. Tercero Espinoza, Dynamic analysis of European copper flows, Resources, Conservation and Recycling 2018, 129, 143 – 152.

DOI: 10.1016/j.resconrec.2017.10.013

Google Scholar

[15] H. Buchner, D. Laner, H. Rechberger, J. Fellner, In-depth analysis of aluminum flows in Austria as a basis to increase resource efficiency, Resources, Conservation and Recycling 2014, 93, 112 – 123.

DOI: 10.1016/j.resconrec.2014.09.016

Google Scholar

[16] S. Glöser-Chaoud, Quantitative Analyse der Kritikalität mineralischer und metallischer Rohstoffe unter Verwendung eines systemdynamischen Modell-Ansatzes, TU Clausthal (2017).

Google Scholar

[17] E. M. Harper, G. Kavlak, T. E. Graedel, Tracking the Metal of the Goblins: Cobalt's Cycle of Use, Environ. Sci. Technol. 2012, 46 (2), 1079 – 1086.

DOI: 10.1021/es201874e

Google Scholar

[18] C. Gandenberger, S. Glöser, F. Marscheider-Weidemann, K. Ostertag, R. Walz, Die Versorgung der deutschen Wirtschaft mit Roh- und Werkstoffen für Hochtechnologien: Präzisierung und Weiterentwicklung der deutschen Rohstoffstrategie, Arbeitsbericht, Vol. 150, Büro für Technikfolgenabschätzung beim deutschen Bundestag, Berlin (2012).

DOI: 10.1515/9783486790382-020

Google Scholar

[19] P. Sommer, V. S. Rotter, M. Ueberschaar, Battery related cobalt and REE flows in WEEE treatment, Waste management (New York, N.Y.) (2015).

DOI: 10.1016/j.wasman.2015.05.009

Google Scholar

[20] I. Porri, Cobalt Facts, Brussels 2006-2016.

Google Scholar

[21] P. Novinsky, S. Glöser, A. Kühn, R. Walz, in Proceedings of the 32nd International Conference of the System Dynamics Society, Delft, Netherlands (2014).

Google Scholar

[22] BIO by Deloitte (2015): Study on data for a raw material system analysis: roadmap and test of the fully operational MSA for raw materials - Prepared for the European Commission, DG GROW, (2015).

Google Scholar

[23] Minerals4EU, European minerals yearbook: - data for cobalt., Brussels (2014).

Google Scholar

[24] F. O. Ongondo, I. D. Williams, Mobile phone collection, reuse and recycling in the UK, Waste management (New York, N.Y.) 2011, 31 (6), 1307 – 1315.

DOI: 10.1016/j.wasman.2011.01.032

Google Scholar

[25] M. Polák, L. Drápalová, Estimation of end of life mobile phones generation, Waste management (New York, N.Y.) 2012, 32 (8), 1583 – 1591.

DOI: 10.1016/j.wasman.2012.03.028

Google Scholar

[26] O. Gantner, J. Grimm, Hutner, Petra, Lubberger, Ariane, Wissenschaftliche Begleitung der Althandy-Sammelaktion Handy clever entsorgen,, Universität Augsburg (2013).

Google Scholar

[27] C. Hagelüken, Lagerstätten auf Rädern, ReSource 2010 (3), 30 – 33.

Google Scholar

[28] T. Elwert, D. Goldmann, F. Römer, M. Buchert, C. Merz, D. Schueler, J. Sutter, Current Developments and Challenges in the Recycling of Key Components of (Hybrid) Electric Vehicles, Recycling 2016, 1 (1), 25 – 60.

DOI: 10.3390/recycling1010025

Google Scholar

[29] ADAC Fahrzeugtechnik, Elektroautos: Marktübersicht/Kenndaten, München (2015).

Google Scholar

[30] C. Graf, in Handbuch Lithium-Ionen-Batterien, SpringerLink Bücher (Eds: R. Korthauer), Imprint: Springer Vieweg. Berlin, Heidelberg (2013).

Google Scholar

[31] S. Leuthner, in Handbuch Lithium-Ionen-Batterien, SpringerLink Bücher (Eds: R. Korthauer), Imprint: Springer Vieweg. Berlin, Heidelberg (2013).

Google Scholar

[32] C. Pillot, The Worldwide Rechargeable Battery Market 2015-2025: Market Report avicenne Energy, France (2015).

Google Scholar

[33] M. Reuter, C. Hudson, A. van Schaik, K. Heiskanen, C. Meskers, C. Hagelüken, Metal Recycling: Opportunities, Limits, Infrastructure, United Nations Environment Programme, Nairobi, Kenya (2013).

Google Scholar

[34] K. Sander, S. Schilling, Transboundary shipment of waste electrical and electronic equipment / electronic scrap --Optimization of material flows and control, Berlin (2010).

Google Scholar

[35] P. Chancerel, Substance flow analysis of the recycling of small waste electrical and electronic equipment: An assessment of the recovery of gold and palladium, Dissertation, TU Berlin.

Google Scholar