Impact-Specific Essential Fracture Work of Banana Fiber Reinforced Low-Density Polyethylene Composites

Article Preview

Abstract:

The aim of this study is to investigate the behavior of banana fiber (BF)-low-density polyethylene (LDPE) composite fracture toughness. The LDPE pellets are transformed into powder form which is then functioned as a matrix reinforced with banana fiber (BF). The composites were formed by injection molding techniques which are followed by atmospheric-pressure annealing at 90°C for 24 hours. The composite fracture toughness behavior was evaluated using the essential work of fracture (EWF) approach. The results show that fracture toughness which is characterized by essential fracture work (we) value increases by the presence of BF up to 5 wt.%. However, the we value starts to decrease in the composite with BF content of 6 wt.%. There is a mismatch about the phenomenon of non-essential fracture work. Stress-whitened zones can be seen and observed but non-essential fracture work based on curves is a negative value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-22

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Rahul, H.M. Shetty, N.K. Madhyastha, P.B. Kumara, K.P. D'Souza, L. D'Souza, Processing and characterisation of banana fiber reinforced polymer nano composite, Nanoscience and Nanotechnology, 7 (2017) 34-37.

Google Scholar

[2] L. Lassila, S. Garoushia, K.V. Pekka, E. Sailynoja, Mechanical properties of fibre reinforced restorative composite with two distinguished fibre length distribution, J Mech Behav Biomed Mater. 60 (2016) 331-338.

DOI: 10.1016/j.jmbbm.2016.01.036

Google Scholar

[3] P. Asokan, M. Firdoous, W. Sonal, Properties and potential of bio fibres, bio binders, and bio composites, Rev. Adv. Mater. Sci. 30 (2012) 254-261.

Google Scholar

[4] M.M. Farag, Quantitative methods of materials substitution: Application to automotive components, Mater Des. 29 (2008) 374-378.

Google Scholar

[5] A. O'Donnell, M.A. Dweib, R.P. Wool, Natural fiber composites with plant oil-based resin, Comp. Sci. Technol. 64 (2004)1135-1145.

DOI: 10.1016/j.compscitech.2003.09.024

Google Scholar

[6] Purnomo, M. Subri, P.H. Setyarini, Fracture development and deformation behavior of zeolite-filled high density polyethylene annealed composites in the plane stress fracture, FME Transactions 46 (2018) 165-170.

DOI: 10.5937/fmet1802157z

Google Scholar

[7] Purnomo, P.H. Setyarini, Atmospheric-pressure annealing effect on the impact fracture toughness of injection-molded zeolite-HDPE composite, International Review of Mechanical Engineering 12 (2018) 556-562.

DOI: 10.15866/ireme.v12i6.15034

Google Scholar

[8] Purnomo, M.,Subri, Post-yield fracture behavior of zeolite-reinforced high density polyethylene annealed composite, International Review of Mechanical Engineering 11 (2017) 87-93.

DOI: 10.15866/ireme.v11i1.10542

Google Scholar

[9] Purnomo,,R. Soenoko, A. Suprapto, Y.S. Irawan, Impact fracture toughness evaluation by essential work of fracture method in high density polyethylene filled with zeolite, FME Transactions 44 (2016) 180-186.

DOI: 10.5937/fmet1602180p

Google Scholar

[10] A.J. Siddiqa, K. Chaudhury, B. Adhikari, Hydrophilic low density polyethylene (ldpe) films for cell adhesion and proliferation, Res. Rev. J. Med. Chem. 1 (2015) 43-54.

Google Scholar

[11] R. Dhabale, V.S. Jatti, A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2, IOP Conf. Ser.: Mater. Sci. Eng. 149 (2016) 012043.

DOI: 10.1088/1757-899x/149/1/012043

Google Scholar

[12] J. Bočková, L. Vojtová, R. Přikryl, J. Čechal, J. Jančář, Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications, Chemical Papers, 62 (2008) 580–588.

DOI: 10.2478/s11696-008-0076-1

Google Scholar

[13] A. Riveiro, R. Soto, J. del Val, R. Comesaña, M. Boutinguiza, F. Quintero, F. Lusquiños, J. Pou, Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications, Appl. Surf. Sci. 302 (2014) 236-242.

DOI: 10.1016/j.apsusc.2014.02.130

Google Scholar

[14] I. Raad, R. Reitzel, Y. Jiang, R.F. Chemaly, T. Dvorak, R. Hachem, Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J. Antimicro. Chemoth. 62 (2008) 746-750.

DOI: 10.1093/jac/dkn281

Google Scholar

[15] C.C. Freytag, F.L. Thies, W. König, T. Welte, Prolonged application of closed in-line suction catheters increases microbial colonization of the lower respiratory tract and bacterial growth on catheter surface, Infection 31 (2003) 31-37.

DOI: 10.1007/s15010-002-3066-1

Google Scholar

[16] P.N. Khanam, M.A. AlMaadeed, Processing and characterization of polyethylene-based composites, Adv. Manuf.: Polym. Compos. Sci. 1 (2015) 63-79.

Google Scholar

[18] Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Biodegradable materials for bone repair and tissue engineering applications, Materials (Basel) 8 (2015) 5744–5794.

DOI: 10.3390/ma8095273

Google Scholar

[19] P. Szymczyk, G. Ziółkowski, A. Junka, E. Chlebus, Application of ti6al7nb alloy for the manufacture of biomechanical functional structures (bfs) for custom-made bone implants, Materials 11 (2018) 971.

DOI: 10.3390/ma11060971

Google Scholar

[20] A.B. Martinez, J.Gamez-Perez, M.Sanchez-Soto, J.I. Velasco, O.O. Santana, M.Ll Maspoch, The Essential Work of Fracture (EWF) method – analyzing the post-yielding fracture mechanics of polymers, Eng. Fail. Anal.16 (2009) 2604–2617.

DOI: 10.1016/j.engfailanal.2009.04.027

Google Scholar

[21] F.M. Peres, J.R. Tarpani, C.G. Schön, Essential Work of Fracture testing method applied to medium density polyethylene, Procedia Mater. Sci. 3 (2014) 756–763.

DOI: 10.1016/j.mspro.2014.06.124

Google Scholar

[22] T. Kuno, Y. Yamagishi, T. Kawamura, K. Nitta, Deformation mechanism under essential work of fracture process in polycyclo-olefin materials, Express Polym Lett. 2 (2008) 404-412.

DOI: 10.3144/expresspolymlett.2008.49

Google Scholar

[23] T. Vu-Khanh, Impact fracture characterization of polymer with ductile behavior, Theor Appl Fract Mech. 21 (1994) 83–90.

DOI: 10.1016/0167-8442(94)00027-1

Google Scholar

[24] T. Vu-Khanh, The impact fracture of polymers: unanswered question, Trends in Pol. Sci. 5 (1997) 356–360.

Google Scholar

[25] I. Gonzalez, J.I. Eguiazabal, J. Nazabal, On the use of the essential work of fracture procedure in the determination of the fracture energy of tough polymeric materials, Polym Test 28 (2009) 760–763.

DOI: 10.1016/j.polymertesting.2009.06.008

Google Scholar

[26] C.R. Bernal, P.M. Frontini, Determination of fracture-toughness in rubber-modified glassy-polymers under impact conditions, Polym. Eng Sci. 35 (1995) 1705–1712.

DOI: 10.1002/pen.760352107

Google Scholar