Comparative Studies on the Synthesis of Copper Oxide Nano-Structures

Article Preview

Abstract:

Synthesis of nanostructures for industrial usage is a challenge issue since most of the scale up production is not economically suitable. Here we have described two efficient synthesis approaches for copper (II) oxide nanostructures. And, we have compared the methods with current published procedures in terms of time and its impact to the environments. Our simple and environmentally friendly synthesis procedures can produce various Cu (II) oxide nanostructures. We have successfully synthesis Cu (OH)2, CuO nanowire and CuO nanoparticles. And, they were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Field emission scanning electron microscopy (FESEM), We have also explored the potential of these nanostructure for future development on biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-56

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kamimura, Ushio H., Matsuno S., Hamada T: Theory of copper oxide superconductors. Springer-Verlag Berlin Heidelberg, (2005).

Google Scholar

[2] J. Bednorz, Muller K., 1988, Rev. of Mod. Phys. 60, 585-600.

Google Scholar

[3] A.S. Lanje, R.S. Ningthoujam, S.J. Shrama, R.K. Vatsa, R.B. Pode, Int. J. Nanotechnol., 2010, 7, 979.

Google Scholar

[4] E.P. Wolhfarth; Ferromagnetic Materials, Vol. II, North-Holland, Amsterdam, New York, Oxford, Tokyo, (1980).

Google Scholar

[5] T. Mitsuyu, O. Yamakazi, K. Ohji, K. Wasa, Ferroelectrics, 1982, 42, 233.

Google Scholar

[6] O. Regan, M. Gratzel, Nature, 1991, 353,737.

Google Scholar

[7] K. Naazeeruddin, A. Kay, M. Gratzel, J. Am. Chem. Soc., 1993, 115, 6832.

Google Scholar

[8] U. Bjoerksten, J. Moser, M. Gratzel, Chem. Mater. 1994, 6, 858.

Google Scholar

[9] W.P. Dow, T.J. Huang, J. Catal., 1996,160, 171.

Google Scholar

[10] P.O. Larsson, A. Andersson, R.L. Wallengerg, B. Svensson, J. Catal., 1996, 163, 279.

Google Scholar

[11] Y. Jiang, S. Decker, C. Mohs, K.J. Klabunde, J. Catal. 1998, 180, 24.

Google Scholar

[12] J. Zhang, Liu J., Peng Q., Wang X., Li Y., 2006, Chemistry of Materials. 18, 867-871.

Google Scholar

[13] J. Wang, He S., Li Z., Jing X., Zhang M., Jiang Z., 2009, Colloid and Polymer Science. 287, 853-858.

Google Scholar

[14] V. Rai, B. Jamuna, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, Mendez-Vilas., A.(Ed.). University of Mysore, India (2011) 197.

Google Scholar

[15] W. X. Zhang, Li, M.; Wang, Q.; Chen, G. D.; Kong, M.; Yang, Z. H.; Mann, S. Adv. Funct. Mater. 2011, 21, 3516−3523.

Google Scholar

[16] S.-F. Zheng, Hu, J.-S.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J.; Guo, Y.-G. Chem. Mater. 2008, 20, 3617−3622.

Google Scholar

[17] H. W. Huang, Liu, Y.; Wang, J. H.; Gao, M. X.; Peng, X. S.; Ye, Z. Z. Nanoscale 2013, 5, 1785−1788.

Google Scholar

[18] L. L. Wang, Cheng, W.; Gong, H. X.; Wang, C. H.; Wang, D. K.; Tang, K. B.; Qian, Y. T. J. Mater. Chem. 2012, 22, 11297−11302.

Google Scholar

[19] J. T. Zhang, Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D, Chem. Mater. 2006, 18, 867−871.

Google Scholar

[20] S.Q. Wang Zhang J.Y., Chen C.H., 2007, CuO-PAA hybrid films: Scripta Materialia. 57, 337-340.

Google Scholar

[21] JY. Xiang, Tu JP, Yuan YF, Wang XL, Huang XH, Zeng ZY (2009), Electrochimica Acta. 54: 1160-1165.

Google Scholar

[22] V.D. Patake Joshi S.S., Lokhande C. D, Joo O. S., 2009, Materials Chemistry and Physics. 114, 6-9.

Google Scholar

[23] L. Cheng., Shao M., Chen D., Zhang Y., 2010, Mat. Res. Bull. 45, 235-239.

Google Scholar

[24] R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater., 2000, 12, 2301.

Google Scholar

[25] A. A. Eliseev, A.V. Lukashin, A. A. Vertegel, L.I. Heifets, A. I. Zhirov, Y. D. Tretyakov, Mater. Res. Innov., 2000, 3, 308.

Google Scholar

[26] J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid State Chem., 2000, 147, 516.

Google Scholar

[27] K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi, S. Mahamuni, Phys. Rev.,2000, 61, 11093.

DOI: 10.1103/physrevb.61.11093

Google Scholar

[28] J.Q. Yu, Z. Xu, D.Z. Jia, Chin. J., Func. Mater. Instrum., 1999, 5, 267.

Google Scholar

[29] S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang, L. Wang, Rep. Res. Cent. Ion Beam Technol., Hosei Univ. Suppl., 2000, 18, 153.

Google Scholar

[30] R. Sankar, P. Manikandan, Malarvizhi V, et al. Spectrochim Acta Mol Biomol Spectrosc. 2014; 121:746-50.

Google Scholar