Preparation, Structure, Optical and Morphological Properties of Co, Ga2O3 Co-Doped ZnS/Se

Article Preview

Abstract:

The material of doping transition metal (TM) in chalcogenide compound such as ZnS and ZnSe can be used in sensors, nonlinear optics, optical thin-films and mid-infrared area because of their faster optical response time, wider transparency range of mid-infrared and higher mid-infrared transmittance, low optical loss and phonon energy. In this paper, the ceramic targets of (ZnS/Se)0.4(Co)x(Ga2O3)0.6-x (x=0.1, 0.3 and 0.5) were prepared by high temperature solid state reaction. The mass loss rate, shrinkage rate and molar ration were calculated. XRD, absorption spectrum and AFM&OM were investigated. All of the results are shown that the optimum doping concentration is (ZnS/Se)0.4(Co)0.5(Ga2O3)0.1 (namely x=0.5), and the optimum intering temperature are in the range 1000~1200°C. Besides, the zinc-blende structure on ceramics targets was confirmed by XRD. A broad application range from VIS to Mid-infrared was suggested by absorption spectra. The optimal base material ZnSe was proved by AFM and OM. All these results indicate that bulks of (ZnS/Se)0.4(Co)x(Ga2O3)0.6-x are most promising materials in future

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-28

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang, Y. H., Mei, Z. X., Liang, H. L. and Du, X. L. Chin. Phys. B. Vol.26 (2017), p.047307.

Google Scholar

[2] A.S. Hassanien, K.A. Aly and A. A. Akl. Journal of Alloys and Compounds Vol.685 (2016), pp.733-742.

Google Scholar

[3] Singh, S., Kumar, Y., Kumar, H., Vyas, S., Periasamy, C., Chakrabarti, P., Jit, S. and S.H. Park. Nanomaterials and Nanotechnology Vol.7 (2017), pp.1-5.

Google Scholar

[4] X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla and B. Luther-Davies. Optics Express Vol.18 (2010), pp.26635-26646.

DOI: 10.1364/oe.18.026635

Google Scholar

[5] P.R.de Moura, D.P. Almeida, and J. C. de Lima. Electron. Spectrosc Vol.155 (2007), pp.129-135.

Google Scholar

[6] X.Y. Wang, Z. chen, H.L. Zhang, M. Xu, G.Z. Chen, B.X. Jiang, C.J. Ke, L. Zhang and Y. Hang. Journal of Alloys and Compounds Vol. 695 (2017), pp.3767-3771.

Google Scholar

[7] D. V. Martyshkin, J. T. Goldstein, V. V. Fedorov and S. B. Mirov. Optics Express Vol.36 (2011), pp.1530-1532.

Google Scholar

[8] L. Chen, J. S. Lai, X. N. Fu, J. Sun, Z. F. Ying, J. D. Wu, H. Lu and N. Xu. Thin Solid Films Vol.529 (2013), pp.76-79.

Google Scholar

[9] A. Eicke, T. Ciba, D. Hariskos, R. Menner, C.Tschamber and W. Witte. Surface and Interface Analysis Vol.45 (2013), pp.1811-1820.

DOI: 10.1002/sia.5325

Google Scholar

[10] Tzong-Yow Tsai and Milton Birnbaum. Journal of applied physics, Vol.87 (2000), p.25, (2000).

Google Scholar

[11] L. Zhang, D.Z. Qin, G.R. Yang and Q.X. Zhang. Chalcogenide Letters Vol.9 (2012), pp.93-98.

Google Scholar

[12] J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata and S. B. Mirov. Conference on Solid State Lasers XX - Technology and Devices, Vol.7912 (2011), p.875223.

DOI: 10.1117/12.875223

Google Scholar

[13] B. T. Huy, M. H. Seo, A. P. Kumar, H. Jeong and Y.I. Lee. Journal of Alloys and Compounds, Vol.588 (2014), pp.127-132.

Google Scholar

[14] M. Luo. Journal of Applied Physics vol. 98 (2005), p.083507.

Google Scholar

[15] M. Rames, O. Heczko, A. Sozinov, K. Ullakko and L. Straka. Scripta Materialia vol.142 (2017), pp.61-65.

DOI: 10.1016/j.scriptamat.2017.07.034

Google Scholar

[16] S.Cao, J.J. Zheng, C.C. Dai, L. Wang, C.M. Li, W.Y. Yang and M.H. Shang. Journal of Materials Science vol.53 (2018), pp.1286-1296.

Google Scholar

[17] L.Y. Liu, L. Yang, Y.T. Pu, D.Q. Xiao and J.G. Zhu. Materials Letters, Vol.66 (2012), pp.121-124.

Google Scholar

[18] M. Lei, X.L. Fu, H.J. Yang, Y.G. Wang, P.G. Li, Q.R. Hu and W.H. Tang. Materials Chemistry and Physics Vol.133, pp.823-828.

Google Scholar

[19] X.C. Liu , Z.Z. Chen , B.Y. Chen, E.W. Shi and D.Q. Liao. Journal of Crystal Growth Vol.312 (2010), pp.2871-2875.

Google Scholar

[20] A.R. de Moraes, D.H. Mosca, N. Mattoso, W.H. Schreinera, A. J. A. de Oliveirab and A. Ortiz. Physica B Vol.320 (2002), pp.199-202.

Google Scholar

[21] M. G. Mahesha, Rashmitha, N. Meghana and M. Padiyar. Physica B, Vol.520 (2017), pp.37-42.

DOI: 10.1016/j.physb.2017.06.011

Google Scholar

[22] I. Toshiyuki, G. Hideo, S. Yoshihisa, M. Shimada, and Y. Kojima. Journal of Crystal Growth Vol.233 (2001), pp.108-111.

Google Scholar

[23] K. Yadav, Y. Dwivedi and N. Jaggi. Journal of Luminescence vol.158 (2015), pp.181-187.

Google Scholar

[24] D. P. Pham, H. T. Nguyen, B. T. Phan, T.D. Cao, V.D. Hoang, V.A. Dao, J. Yi and C.V. Tran. Advances in Condensed Matter Physics Vol.10 (2014), p.1155.

Google Scholar

[25] J. B. Chen, L. Wang, X. Q. Su, L.Kong, G.Q. Liu and X.P. Zhang. Optics Express Vol.18 (2010), pp.1398-1405.

Google Scholar

[26] T.L. Phan, P. Zhang, D.S. Yang, N.X. Nghia and S.C. Yu. Journal of Applied.Physics Vol.110 (2011), p.063912.

Google Scholar

[27] N. Myoung, V. M. Dmitri and V. F. Vladimir. Journal of Luminescence Vol.133 (2013), pp.57-261.

Google Scholar

[28] J.M. Pawhkowski. Solid State Communications Vol.55 (1985), pp.31-33.

Google Scholar

[29] B.Amin and I. Ahmad. Journal of Applied Physics Vol.106 (2009), p.3710.

Google Scholar