Growth and Characterization of (E)-1-(5-Chlorothiophene-2-Yl)-3-(4- Dimethylamino)Phenyl)Prop-2-En-1-One, Novel NLO Single Crystal

Article Preview

Abstract:

A novel NLO compound (E)-1-(5-chlorothiophene-2-yl)-3-(4-dimethylamino) phenyl) prop-2-en-1-one has been synthesized by adopting claisen schmidt condensation reaction method and the single crystals are grown using slow solvent evaporation technique. The FT-IR spectrum confirms the various functional groups present in the compound. The crystal structure was studied by XRD method, which reveals that the compound crystallizes in Monoclinic crystal system with a space group P21/n and the corresponding lattice parameters are a = 7.595 (2) Å, b = 17.441 (4) Å, c = 10.917 (3) Å, α = 90o, β = 102.500 (12)o, γ = 90o. UV-Visible spectrum shows that the crystal is transparent in the entire visible region. Refractive index of the crystal was determined using Brewster’s angle method. Thermal stability of the material was determined from TG/DTA test. The Second harmonic generation efficiency of the crystal was estimated using NLO test and the efficiency was found to be 0.84 times that of UREA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mohana, G. Ahila, M. Divya Bharathi, G. Anbalagan: J. crystal growth, 450 (2016)181.

Google Scholar

[2] P. Rekha, G. Peramaiyan, M. Nizam Mohideen, R. Mohan kumar, R. Kanagadurai: J. crystal growth, 441 (2016) 18-25.

DOI: 10.1016/j.jcrysgro.2016.02.005

Google Scholar

[3] S. Gowri, T. Uma Devi, S. Priya, C. Surendra Dilip, S. Selvanayagam, N. Lawrence: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 143 (2015) 192-199.

DOI: 10.1016/j.saa.2015.01.083

Google Scholar

[4] P. C. Rajesh Kumar, V. Ravindrachary, K. Janardhana, Boja Poojary: J. Crystal Growth, 354 (2012) 182-187.

DOI: 10.1016/j.jcrysgro.2012.06.006

Google Scholar

[5] K. Thanigaimani, S. Arshad, N. C. Khalib, I. A. Razak, C. Arunagiri, A. Subashini, S. F. Sulaiman, N. S. Hashim, K. Leong Ooi: SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 149 (2015) 90-102.

DOI: 10.1016/j.saa.2015.04.028

Google Scholar

[6] A. N. Prabhu, V. Upadhyaya, A. Jayarama, K. Subrahmanya Bhat: Materials Chemistry and Physics,138 (2013) 179-185.

DOI: 10.1016/j.matchemphys.2012.11.041

Google Scholar

[7] H. J. Ravindra, A. John Kiran, S. M. Dharmaprakash, N. Satheesh Rai, K. Chandrasekharan, B. Kalluraya, F. Rotermund: J. Crystal Growth, 310 (2008) 4169-4176.

DOI: 10.1016/j.jcrysgro.2008.06.045

Google Scholar

[8] H. A. Skinner, Bond energy length dependence for CC, CN, and CO bonds, Rev. Port. Quim. 29 (1987) 39–46.

Google Scholar

[9] N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, P. Ramasamy, W. T. A. Harrison: J. Crystal Growth, 262 (2004) 490-498.

DOI: 10.1016/j.jcrysgro.2003.08.082

Google Scholar

[10] K. Sathya, P. Dhamodharan, M. Dhandapani: J. Molecular Structure, 1137 (2017) 663-[11] J. Indira, P. Prakash Karat, B. K. Sarojini: J. Crystal Growth, 242 (2002) 209-(2014).

Google Scholar