Electrical Transport Properties of Perovskite La0.7Sr0.2Ba0.1Mn1-xNixO3(x = 0 and 0.1) Manganite

Article Preview

Abstract:

The effect of nickel substitution on the electrical transport properties of La0.7Sr0.2Ba0.1Mn1-xNixO3 (x = 0 and 0.1) manganite have been studied. The temperature dependence of resistivity of the samples shows that nickel substitution increases the overall resistivity. Exchange probability calculation shows that the ferromagnetic (FM) coupling inside the sample decreases upon nickel substitution, which induces antiferromagnetic (AFM) coupling inside the sample. These results are suitable with the reduction in the electronic bandwidth value. Comparison of experimental data with theoretical models shows that the electrical behavior of the samples is well explained by a theory based on percolation models. Present result suggests that the electrical behavior of the sample was influenced by scattering and interaction between electron, phonon, and magnon. Nickel substitution also decrease the metal-insulator transition temperature and theoretical Curie temperature from around 328 K to 249 K and around 349 K to 275 K respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-248

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhou, X. Zhu, and S. Li, Structure, magnetic, electrical transport and magnetoresistance properties of La0.67Sr0.33Mn1−xFexO3 (x=0-0.15) doped manganite coatings, Ceram. Int. 43 (2017) 3679–3687.

DOI: 10.1016/j.ceramint.2016.11.210

Google Scholar

[2] P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S. W. Cheong, D. Jorgensen, D. N Argyriou, Structural effects on the magnetic and transport properties of perovskite A1−xAx'MnO3 (x = 0.25,0.30), Phys. Rev. B 56 (1997) 8265–8276.

Google Scholar

[3] J. Yang, Y. Q. Ma, W. H. Song, R. L. Zhang, B. C. Zhao, Y.P. Sun, The correlation between structure and magnetic properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15), Sol. Stat Commu. 136 (2005) 108-113.

DOI: 10.1016/j.ssc.2005.06.009

Google Scholar

[4] M. Oumezzine, O. Peña, T. Guizouarn, R. Lebullenger, M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite, J. Magn. Magn. Mater. 324 (2012) 2821–2828.

DOI: 10.1016/j.jmmm.2012.04.017

Google Scholar

[5] T. S. Zhao, W. X. Xianyu, B. H. Li, and Z. N. Qian, Magnetic properties and low-field magnetoresistance of La0.7Sr0.3Mn0.9M0.1O3 compounds (M=Al, Cr, Mn, Fe, Co, Ni, Cu, and Ga), J. Alloys Compd. 459 (2008) 29-34.

DOI: 10.1016/j.jallcom.2007.04.302

Google Scholar

[6] M. S. Kim, J. B.Yang, Q. Cai, W. J. James, W. B. Yelon, P. E. Parris, S. K. Malik, Structural, magnetic, and transport properties of Zr-substituted La0.7Sr0.3MnO3, J. App. Phys. 102 (2007) 013531.

DOI: 10.1063/1.2749472

Google Scholar

[7] S. Hua, P. Zhang, H. Yang, S. Zhang, H. Ge, The Magnetic and Magnetocaloric Properties of the Perovskite La0.7Ca0.3Mn1-xNixO3, J. Magn. Magn. Mater. 18 (2013) 34–38.

Google Scholar

[8] G. M. Amara, J. Dhahri, J. Dha.hri, E. K. Hlil, Correlation between magnetic and electric properties based on the critical behavior of resistivity and percolation model of La0.8Ba0.1Ca0.1MnO3 polycrystalline, RSC Adv. 7 (2017) 10928–10938.

DOI: 10.1039/c6ra28839a

Google Scholar

[9] D. R. Munazat, B. Kurniawan, Structural Studies of perovskite La0.7Sr0.2Ba0.1Mn1-xNixO3 (x = 0 and x = 0.1) manganite synthesized by sol-gel method , J. Phys.: Conf. Ser. 1170 (2019) 012051.

DOI: 10.1088/1742-6596/1170/1/012051

Google Scholar

[10] T. Geng, S. Zhuang, Correlations between structural effects and bandwidth in manganites, Physics Letters 374 (2010) 1784–1789.

DOI: 10.1016/j.physleta.2010.02.004

Google Scholar

[11] J. Feng, C. Ye, L. P. Hwang, Magnetic and magnetotransport properties in the Ni-doped La0.7Sr0.3MnO3 system, Phys. Rev. B 61 (2000) 271-276.

Google Scholar

[12] A. Coşkun, E. Taşarkuyu, A. E. Irmak, M. Acet, Y. Samancioglu, S. Aktürk, Magnetic properties of La0.65Ca0.30Pb0.05Mn0.9B0.1O3 (B=Co, Ni, Cu and Zn), J. Alloys Compd. 622 (2015) 796-804.

DOI: 10.1016/j.jallcom.2014.10.182

Google Scholar

[13] B. Kurniawan, S. Winarsih, A. Imaduddin, A. Manaf, Correlation between microstructure and electrical transport properties of La0.7Ba1-xCax)0.3MnO3 ( x = 0 and 0.03) synthesized by sol gel, Phys. B Con. Mat. 532 (2018) 161–165.

DOI: 10.1016/j.physb.2017.08.038

Google Scholar

[14] A. Dhahri, M. Jemmali, E. Dhahri, E. K. Hlil, Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1−xCrxO3 (0.15, 0.20 and 0.25) manganite oxide, Dalt. Trans. 44 (2015) 5620-5627.

DOI: 10.1039/c4dt03662j

Google Scholar

[15] D. Varshney, D. Choudhary, M. W.Shaikh,E. Khan,Electrical resistivity behavior of sodium substituted manganites: electron-phonon, electron-electron, and electron-magnon interactions, The European Physical Journal B 76 (2010) 327–338.

DOI: 10.1140/epjb/e2010-00192-4

Google Scholar

[16] S. Mnefgui, N. Zaidi, N. Dhahri, J. Dhahri, E. K. Hlil, Electrical transport properties and transport–entropy correlations in La0.57Nd0.1Sr0.33MnO3 manganite, J. Magn. Magn. Mater. 384 (2015) 219–223.

DOI: 10.1016/j.jmmm.2015.02.049

Google Scholar

[17] N. Mechi, B. Alzahrani, S. Hcini, M. L. Bouazizi, A. Dhahri, Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite, Phase Transitions 91 (2018) 559–572.

DOI: 10.1080/01411594.2018.1424336

Google Scholar