Enhanced Room-Temperature Ferromagnetism in Superconducting Pr2-xCexCuO4 Nanoparticles

Article Preview

Abstract:

Recently, the so-called room-temperature ferromagnetism in any nanoparticles has been studied intensively. It is well known that the properties of ferromagnetism and superconductivity are contradictory in a superconducting high-Tc cuprate. The existence of ferromagnetism in the nanoparticles has been suggested to occur on the surface. This magnetism has been expected to come from defects inducing magnetic moments on oxygen vacancies at the surface of the nanoparticles. This work is to observe magnetism in nanosized superconducting Pr2-xCexCuO4 (PCCO) with x = 0.15 by means of a superconducting quantum interference device (SQUID). The magnetization curves of the reduced PCCO nanoparticles with the superconducting transition temperature, Tc, of ~25 K have revealed that there is weak ferromagnetism observed at room temperature. The magnitude of magnetization could be enhanced by oxygen reduction annealing in vacuum with increasing annealing temperature. A non-linear magnetization occurring in the reduced PCCO nanoparticles through the vacuum annealing process is probably due to a strong oxygen reduction producing more oxygen vacancies in the T'-structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-268

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Bao, X. Qi, Tana, L. Chao, O. Tegus, Synthesis, and magnetic and optical properties of nanocrystalline alkaline-earth hexaborides, Cryst. Eng. Comm. 18 (2016) 1223-1229.

DOI: 10.1039/c5ce02060c

Google Scholar

[2] P.O. Lehtinen, A.V. Krasheninnikov, A.S. Foster, R.M. Nieminen, 16 - The Magnetic Nature of Intrinsic and Irradiation-induced Defects in Carbon Systems A2 - Makarova, Tatiana, in: F. Palacio (Ed.) Carbon Based Magnetism, Elsevier, Amsterdam, 2006, pp.371-396.

DOI: 10.1016/b978-044451947-4/50017-7

Google Scholar

[3] A. Oshiyama, S. Okada, 14 - Magnetism in Nanometer-scale Materials that Contain No Magnetic Elements A2 - Makarova, Tatiana, in: F. Palacio (Ed.) Carbon Based Magnetism, Elsevier, Amsterdam, 2006, pp.329-352.

DOI: 10.1016/b978-044451947-4/50015-3

Google Scholar

[4] S.A. Chambers, T.C. Droubay, C.M. Wang, K.M. Rosso, S.M. Heald, D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin, Ferromagnetism in oxide semiconductors, Mater. Today, 9 (2006) 28-35.

DOI: 10.1016/s1369-7021(06)71692-3

Google Scholar

[5] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Phys. Rev. B, 74 (2006) 161306.

DOI: 10.1103/physrevb.74.161306

Google Scholar

[6] G.M. De Luca, G. Ghiringhelli, M. Moretti Sala, S. Di Matteo, M.W. Haverkort, H. Berger, V. Bisogni, J.C. Cezar, N.B. Brookes, M. Salluzzo, Weak magnetism in insulating and superconducting cuprates, Phys. Rev. B, 82 (2010) 214504.

DOI: 10.1103/physrevb.82.214504

Google Scholar

[7] M. Gasmi, S. Khene, G. Fillion, Coexistence of superconductivity and ferromagnetism in nanosized YBCO powders, J. Phys. Chem. Solids, 74 (2013) 1414-1418.

DOI: 10.1016/j.jpcs.2013.04.025

Google Scholar

[8] S.K. Hasanain, N. Akhtar, A. Mumtaz, Particle size dependence of the superconductivity and ferromagnetism in YBCO nanoparticles, J. Nanopart. Res. 13 (2011) 1953-1960.

DOI: 10.1007/s11051-010-9947-9

Google Scholar

[9] Shipra, A. Gomathi, A. Sundaresan, C.N.R. Rao, Room-temperature ferromagnetism in nanoparticles of superconducting materials, Solid State Comm. 142 (2007) 685-688.

DOI: 10.1016/j.ssc.2007.04.041

Google Scholar

[10] J. Cervenka, M.I. Katsnelson, C.F.J. Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects, Nat. Phys. 5 (2009) 840-844.

DOI: 10.1038/nphys1399

Google Scholar

[11] W. Fan, L.-J. Zou, Z. Zeng, Ferromagnetism on surface of YBa2Cu3O7 particle, Physica C, 492 (2013) 80-89.

DOI: 10.1016/j.physc.2013.06.003

Google Scholar

[12] A. Sundaresan, C.N.R. Rao, Ferromagnetism as a universal feature of inorganic nanoparticles, Nano Today, 4 (2009) 96-106.

DOI: 10.1016/j.nantod.2008.10.002

Google Scholar

[13] F. Moraes, Enhancement of the Magnetic Moment of the Electron due to A Topological Defect, Mod. Phys. Lett. A, 10 (1995) 2335-2338.

DOI: 10.1142/s0217732395002490

Google Scholar

[14] H. Arabi, S. Jamshidi, M. Komeili, A. Amirabadizadeh, Coexistence of Superconductivity and Ferromagnetic Phases in YBa2Cu3O7−δ Nanoparticles, J. Supercond. Nov. Magn. 26 (2013) 2069-2071.

DOI: 10.1007/s10948-012-1859-8

Google Scholar

[15] M.A. Baqiya, H. Widodo, L. Rochmawati, Darminto, T. Adachi, Y. Koike, Ferromagnetism in 2212 phase Bi-Sr-Ca-Cu-O nano-superconductors, AIP Conf. Proc. 1454 (2012) 260-263.

DOI: 10.1063/1.4730735

Google Scholar

[16] M.A. Baqiya, P.E.D. Putra, B. Triono, R. Irfanita, S. Suasmoro, D. Darminto, T. Kawamata, T. Noji, H. Sato, M. Kato, Y. Koike, Ce-Doping and Reduction Annealing Effects on Magnetic Properties of Pr2-xCexCuO4 Nanoparticles, J. Supercond Nov. Magn. (2018).

DOI: 10.1007/s10948-018-4941-z

Google Scholar

[17] P. Fournier, T' and infinite-layer electron-doped cuprates, Physica C, 514 (2015) 314-338.

DOI: 10.1016/j.physc.2015.02.036

Google Scholar

[18] T. Adachi, A. Takahashi, K.M. Suzuki, M.A. Baqiya, T. Konno, T. Takamatsu, M. Kato, I. Watanabe, A. Koda, M. Miyazaki, R. Kadono, Y. Koike, Strong Electron Correlation behind the Superconductivity in Ce-Free and Ce-Underdoped High-Tc T'-Cuprates, J. Phys. Soc. Jpn. 85 (2016) 114716.

DOI: 10.7566/jpsj.85.114716

Google Scholar

[19] M.A. Baqiya, B. Triono, Darminto, T. Adachi, A. Takahashi, T. Konno, M. Watanabe, T. Prombood, Y. Koike, Protected Vacuum Annealing Effect on Single Crystals of Pr1-xLaCex CuO4 in the Overdoped Regime, IOP Conf. Ser.: Mater. Sci. Eng. 196 (2017) 012011.

DOI: 10.1088/1757-899x/196/1/012011

Google Scholar

[20] O. Matsumoto, A. Utsuki, A. Tsukada, H. Yamamoto, T. Manabe, M. Naito, Superconductivity in undoped T'-RE2CuO4 with Tc over 30K, Physica C, 468 (2008) 1148-1151.

DOI: 10.1016/j.physc.2008.05.019

Google Scholar

[21] M. Matsuda, Y. Endoh, Y. Hidaka, Crystal growth and characterization of Pr2−xCexCuO4, Physica C, 179 (1991) 347-352.

DOI: 10.1016/0921-4534(91)92180-j

Google Scholar

[22] H. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2 (1969) 65-71.

Google Scholar

[23] L. Lutterotti, P. Scardi, Simultaneous structure and size-strain refinement by the Rietveld method, J. Appl. Crystallogr. 23 (1990) 246-252.

DOI: 10.1107/s0021889890002382

Google Scholar

[24] T. Uzumaki, K. Hashimoto, N. Kamehara, Raman scattering and X-ray diffraction study in layered cuprates, Physica C, 202 (1992) 175-187.

DOI: 10.1016/0921-4534(92)90310-9

Google Scholar

[25] P. Richard, M. Poirier, S. Jandl, P. Fournier, Impact of the reduction process on the long-range antiferromagnetism in Nd1.85Ce0.15CuO4, Phys. Rev. B, 72 (2005) 184514.

Google Scholar

[26] H.J. Kang, P. Dai, B.J. Campbell, P.J. Chupas, S. Rosenkranz, P.L. Lee, Q. Huang, S. Li, S. Komiya, Y. Ando, Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides, Nat. Mater. 6 (2007) 224.

DOI: 10.1038/nmat1847

Google Scholar

[27] H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO, Appl. Phys. Lett. 88 (2006) 242507.

DOI: 10.1063/1.2212277

Google Scholar

[28] S. Batakrushna, P.K. Giri, D. Soumen, I. Kenji, F. Minoru, Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO 2 nanoribbons, J. Phys. D: Appl. Phys. 47 (2014) 235304.

DOI: 10.1088/0022-3727/47/23/235304

Google Scholar

[29] R. Irfanita, P.E.D. Putra, T. Bambang, S. Chatree, K. Krongthong, M.A. Baqiya, Darminto, Oxygen Reduction Effect on T'-Pr2-xCexCuO4 Nanopowders in the Underdoped Regime Studied by X-Ray Absorption near Edge Structure, Mater. Sci. Forum, 936 (2018) 93-97.

DOI: 10.4028/www.scientific.net/msf.936.93

Google Scholar