Study of Electrochemical Deposition Process of Graphene Oxide on DSSC TiO2 Based Photoanode

Article Preview

Abstract:

Graphene oxide (GO) layer has been successfully deposited on to ITO/TiO2 substrate by electrochemical deposition. Deposition process of GO layers were carried out in one, three, and six cycles in the voltage range of-1.6 to 0 volt and scan rate of 50 mV/s. The variation of cycles was performed, in order to study the deposition process relates to device performances. TiO2 macro-channel (TiO2μc) also introduced in photoanode system and it required annealing treatment up to 500°C. The oxygen content in GO will be reduced by annealing treatment and the reduced-GO (rGO) layer was trapped inside of TiO2 mesoporous. The cyclic voltammetry curves of blank sample and GO deposition were also observed in order to ensure the GO deposition process was successfully done. After immersing in ruthenium dye overnight, the ITO/TiO2/rGO/TiO2-μc was sandwiched with Pt/FTO as counter electrode to configure dye sensitized solar cell (DSSC) structure. The photovoltaic characteristics, morphology, and UV-Vis absorbance of each layer were investigated. A highest DSSC efficiency (η= 3.34 %) was achieved by 3-cycles of GO deposition process of photoanode with photocurrent density (Jsc) of 9.94 mA/cm2, open voltage (Voc) of 0.70 V and fill factor (FF) of 48.69% under 100 mW/cm2 of light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

378-385

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Geim A. K., Novoselov K. S., The rise of graphene, Nat. Mater. 6(3) (2007) 183-191.

Google Scholar

[2] F.A. Jumeri, H.N. Lim, Z. Zainal, N.M. Huang, A. Pandikumar, S.P. Lim, Dual functional reduced graphene oxide as photoanode and counter electrode in dye-sensitized solar cells and its exceptional efficiency enhancement, Journal of Power Sources, 293 (2015) 712-720.

DOI: 10.1016/j.jpowsour.2015.05.102

Google Scholar

[3] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706.

DOI: 10.1038/nature07719

Google Scholar

[4] P. W. Sutter, J. I. Flege, E. A. Sutter, Epitaxial graphene on ruthenium, Nature Materials 7, 2008, 406.

DOI: 10.1038/nmat2166

Google Scholar

[5] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558.

DOI: 10.1016/j.carbon.2007.02.034

Google Scholar

[6] Pei S, Cheng H-M, The reduction of graphene oxide, Carbon. 50 (2011) 3210-3228.

Google Scholar

[7] Novoselov K. S., Geim A. K., Morozov S. V., D. Jiang, Y. Zhang, S. V. Dubonos, I V Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

DOI: 10.1126/science.1102896

Google Scholar

[8] Balandin A. A., Ghosh S., Bao W. Z., Calizo I., Teweldebrhan D., Miao F, Lau C. N., Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3) (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[9] Bolotin K. I., Sikes K J., Jiang Z., Klima M., Fudenberg G., Hone J., Kim P., Stormer H. L., Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10), (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[10] Morozov S. V., Novoselov K. S., Katsnelson M. I., Schedin F., Elias D. C., Jaszczak J. A., Geim A. K., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (1) (2008) 016602.

DOI: 10.1103/physrevlett.100.016602

Google Scholar

[11] O'Regan & Michael Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-739.

DOI: 10.1038/353737a0

Google Scholar

[12] H. S. Jang, J. M. Yun, D. Y. Kim, D. W. Park., S. I. Na, and S. S. Kim, Moderately reduced graphene oxide as transparent counter electrodes for dye-sensitized solar cells, Electrochim. Acta. 81, (2012) 301–307.

DOI: 10.1016/j.electacta.2014.03.001

Google Scholar

[13] Nair A. S., Peining Z., Babu V. J., Shengyuan Y., Ramakrishna S., Anisotropic TiO2 nanomaterials in dye-sensitized solar cells, Phys. Chem. Chemical Physics. 13 (2011) 21248–21261.

DOI: 10.1039/c1cp23085a

Google Scholar

[14] J. Song, Z. Yin, Z. Yang, P. Amaladass, S. Wu, J. Ye, Y. Zhao, W-Q Deng, H. Zhang, and X-W Liu, Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 junction, Chem. Eur. J. 17 (2011) 10832 – 10837.

DOI: 10.1002/chem.201101263

Google Scholar

[15] L. Wei, P. Wang, Yulin Yang, Z. Zhan, Y. Dong, W. Song and R. Fan, Enhanced performance of the dye sensitized solar cell by the introduction of graphene oxide into the TiO2 photoanode, Inorg. Chem. Front. 5 (2018) 54.

DOI: 10.1039/c7qi00503b

Google Scholar

[16] S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, Reduce graphene oxide-titania nanocomposite-modified photoanode for efficient dye-sensitized soalr cell, Int. J. Energy Res. 39 (2015) 812–824.

DOI: 10.1002/er.3307

Google Scholar

[17] V. Marcelina, H. Addini, N. Syakir, A. Bahtiar, S. Wyantuti, Y. W. Hartati and Fitrilawati, Preparation of graphene oxide thin films using cyclic voltage electrochemical deposition method and its characterization, J. Phys.: Conf. Ser. 1080 (2018) 012028.

DOI: 10.1088/1742-6596/1080/1/012028

Google Scholar

[18] S. Sarker, H. W. Seo, K. S. Lee, Y. K. Jin, H. Ju, and D. M. Kim, Exact analytical analysis of current-density voltage curves of dye-sensitized solar cells, Sol. Energy, 115 (2015) 390–395.

DOI: 10.1016/j.solener.2015.03.009

Google Scholar

[19] L. Safriani, A. Nurrida, C. Mulayana, T. Susilawati, A. Bahtiar, A. Aprilia, Calculation of DSSC parameters based on ZnO/TiO2 mesoporous photoanode, IOP Conf. Series: Earth and Environmental Science 75 (2017) 012004.

DOI: 10.1088/1755-1315/75/1/012004

Google Scholar

[20] A. Aprilia, L. Safriani, Wa Ode S. Arsyad, N. Syakir, T. Susilawati, C. Mulyana, Fitrilawati, R. Hidayat, ZnO/TiO2 bilayer heterojunction as a working electrode in quasi solid dye sensitized solar cells, IOP Conf. Series: Materials Science and Engineering 214 (2017) 012033.

DOI: 10.1088/1757-899x/214/1/012033

Google Scholar

[21] G.M.M.W. Bissels, J.J. Schermer, M.A.H. Asselbergs, E.J. Haverkamp, P. Mulder, G.J. Bauhuis, E. Vlieg, Theoretical review of series determination methods for solar cells, Solar Energy Materials & Solar Cells, 130 (2014) 605–614.

DOI: 10.1016/j.solmat.2014.08.003

Google Scholar