μSR Study with Light Irradiation of P3HT:ZnO Nanoparticles as Active Material of Hybrid Solar Cells

Article Preview

Abstract:

Recently, hybrid solar cell that consists of a combination of organic and inorganic materials offers promise in increasing efficiency. Combination of conjugated polymer of Poly (3-hexyl thiophene)/P3HT which has the highest hole mobility with inorganic materials which has high electron mobility, good physical and chemical stability of inorganic nanocrystals, shows a better performance of hybrid solar cells. We have conducted a measurement to investigate the charge carrier transport in active material of hybrid solar cells by using muon spin relaxation (μSR) with light irradiation. A bulk sample used in this study is hybrid organic-inorganic material consisting of regio-regular P3HT and ZnO nanoparticles. Longitudinal-field μSR measurements were performed in magnetic field ranging from 0 to 395 mT at temperature of 10 K, 15 K and 25 K. Based on μSR measurement with light irradiation, we found that for those temperatures, longitudinal field dependence of λ1 was proportional with C-H0.5 curve indicating three-dimensional inter-chain diffusion. We assume that light irradiation initiates the production of exciton that increases the number of charge carrier in the sample and transports not only along the chain of polymer (one-dimensional) but also perpendicular to other chain of polymer (three-dimensional). With light irradiation, the crossover temperature from one-dimensional to three-dimensional of regio-regular P3HT and ZnO nanoparticles bulk sample was obtained at lower temperature of 10 K compared to previous result at 25 K without light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-408

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Blakersa, N. Zin, K. R. McIntosh and K. Fong, High Efficiency Silicon Solar Cells, Energy Procedia 33 (2013) 1-10.

DOI: 10.1016/j.egypro.2013.05.033

Google Scholar

[2] R. Liu, Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells, Materials 7 (2014) 2747-2771.

Google Scholar

[3] A. Babel, S. A. Jenekhe, Alkyl chain length dependence of the field-effect carrier mobility in regioregular poly(3-alkylthiophene)s, Synthetic Metals 148 (2005)169-173.

DOI: 10.1016/j.synthmet.2004.09.033

Google Scholar

[4] S. Günes, N. S. Sariciftci, Hybrid solar cells, Inorganica Chimica Acta 361 (2008) 581–588.

DOI: 10.1016/j.ica.2007.06.042

Google Scholar

[5] P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L.H. Slooff, W. J. H. van Gennip, P. Jonkheijm and R. A. J. Janssen, Photoinduced Electron Transfer and Photovoltaic Response of a MDMO-PPV:TiO2 Bulk-Heterojunction, Adv. Mater 15 (2003) 118-121.

DOI: 10.1002/adma.200390022

Google Scholar

[6] W. J. E. Beek, M.M. Wienk, R. A. J. Janssen, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Adv. Funct. Mater. 16 (8) (2006) 1112.

DOI: 10.1002/adfm.200500573

Google Scholar

[7] L. Safriani, Risdiana, A. Bahtiar, A. Aprilia, I. Kawasaki and I. Watanabe, μSR Study of Charge Carrier Motion in Active Layer P3HT:ZnO:PCBM Hybrid Solar Cells, Materials Science Forum 827 (2015) 131-134.

DOI: 10.4028/www.scientific.net/msf.827.131

Google Scholar

[8] D. Patidar, A. Kaswan, N. S. Saxena and K. Sharma, Monodispersed ZnO Nanoparticles and Their Use in Heterojunction Solar Cell, The Scientific World Journal Vol. 2013 (2013) Article ID 260521.

DOI: 10.1155/2013/260521

Google Scholar

[9] W. J. E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer, Adv. Mater. 16 (12) (2004) 1009.

DOI: 10.1002/adma.200306659

Google Scholar

[10] L. Safriani, Risdiana, A. Bahtiar, A. Aprilia, R. E. Siregar, R. Hidayat, T.P.I. Saragi, I. Kawasaki and I. Watanabe, Charge Carrier Dynamics of Active Material Solar Cell P3HT:ZnO Nanoparticles Studied by Muon Spin Relaxation (μSR), Advanced Materials Research 896 (2014) 477-480.

DOI: 10.4028/www.scientific.net/amr.896.477

Google Scholar

[11] L. Safriani, Risdiana, Fitrilawati, M. Manawan, A. Bahtiar, A. Aprilia, D. P. Sari, J. Angel and I. Watanabe, Charge carrier transport in blend of P3HT and ZnO nanoparticles at low temperature studied by µSR, J. Phys.: Conf. Ser. 1080 (2018) 012011.

DOI: 10.1088/1742-6596/1080/1/012011

Google Scholar

[12] M. A. Eric, Synthesis and Growth of ZnO Nanoparticles, J. Phys. Chem. B 102 (29) (1998) p.5566–5572.

Google Scholar

[13] T. Matsuzaki, K. Nagamine, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Ishida, S. N. Nakamura, I. Watanabe and G.H. Eaton, A tritium gas-handling system for muon catalyzed fusion research at the RIKEN-RAL Muon Facility, Nucl. Instr. Meth. (2002) A 480 814.

DOI: 10.1016/s0168-9002(01)01210-4

Google Scholar

[14] K. Nagamine, T. Matsuzaki, K. Ishida, I. Watanabe, R. Kadono, G. H. Eaton, H. J. Jones, G. Thomas and W. G. Williams, Construction of Riken-ral muon facility at ISIS and advanced μSR, Hyperfine Interactions 87 (1994) 1091.

DOI: 10.1007/bf02068509

Google Scholar

[15] Risdiana, Fitrilawati, R. Hidayat. E. Siregar, M. O. Tjia and I. Watanabe, Intra- and inter-chain polaron diffusion in regio-random polythiophene studied by muon spin relaxation, Physica B 405 (2010) S381.

DOI: 10.1016/j.physb.2010.01.080

Google Scholar

[16] F. L. Pratt, Repolarization of anisotropic muonium in orientationally disordered solids, Philos. Mag. Lett. 75 (1997) 371-380.

DOI: 10.1080/095008397179444

Google Scholar

[17] M. A. Butler, L. R. Walker, Z. G. Soos, Dimensionality of spin fluctuations in highly anisotropic TCNQ salts, J. Chem. Phys. 64 (1976) 3592-3601.

DOI: 10.1063/1.432709

Google Scholar

[18] F. L. Pratt, S. J. Blundell, W. Hayes, K. Nagamine, K. Ishida and A. P. Monkman, Anisotropic Polaron Motion in Polyaniline Studied by Muon Spin Relaxation, Phys. Rev. Lett. 79 (1997) 2855-2858.

DOI: 10.1103/physrevlett.79.2855

Google Scholar