Synthesis and Characterization of Nanopraticle Hematite (α-Fe2O3) Minerals from Natural Iron Sand Using Co-Precipitation Method and its Potential Applications as Extrinsic Semiconductor Materials Type-N

Article Preview

Abstract:

This research is about nanoparticles hematite (NPH) synthesized and characterized from natural iron sands using co-precipitation method and its potential applications as extrinsic semiconductor materials type-N. The aims of this study is to determine the process parameters to obtain hematite of high purity degree and to observe its physical characteristics as an extrinsic semiconductor materials type-N. The iron sand was first separated by magnetic technique and then dissolved into HCl solution before conducting the precipitation process. Precipitation was done by dripping ammonium hydroxide (NH4OH). Precipitated powder was dried at 80°C for 2 hours, and then calcined at 500°C, 600°C 700°C for 2 hours respectively. The composition of iron sands, purity degree, hematite mineral grain size, and space group were analyzed by XRF, XRD, FTIR and SEM. The XRF analysis result of raw material, showed that dominant element and composition in the sample is Fe with purity degree is 90.51%. The XRD result before and after precipitation showed Fe3O4 and α-Fe2O3. Fe3O4 purity degree was obtained 85%, and α-Fe2O3 in NPH500, NPH600, NPH700 were 63%, 83%, and 76%, respectively. FTIR spectral showed crystalline hematite characteristics stong band of 472.07 to 559.62 cm-1. SEM image showed the morphology of agglomeration particulates, when the calcinaton temperature increases, the agglomeration will be seperated due to thermal energy. Based on the charaterization results it was found that the natural iron sand synthesized has the potential to be applied as an N-type extrinsic semiconductor material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

259-266

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jarzebski M, Kościński M, and Białopiotrowicz T. 2017. Determining the size nanoparticle in the example of magnetic iron oxide core-shell systems. Journal of Physics: Conf. Series 885 012007.

DOI: 10.1088/1742-6596/885/1/012007

Google Scholar

[2] Rahmawati R, Melati A, Taufiq A, Sunaryono, Diantoro M, Yuliarto B, Suyatman S, Nugraha N, and Kurniadi D. 2017. Preparation of MWCNT-Fe3O4 Nanocomposite from Iron Sand Using Sonochemical Route. Material Science and Engineering: Conf. Series 202 012013.

DOI: 10.1088/1757-899x/202/1/012013

Google Scholar

[3] Wu W, Zhaohui W, Taekyung Y, Changzhong J, and Woo-Sik K. 2015. Recent Progress on Magnetic Iron Oxide Nanoparticles: Syinthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 16 023501 43pp.

Google Scholar

[4] Wong W, Bronikowski J, Hoenk E, Kowalczyk S and Hunt D 2005 Chem. Mater. 17 237.

Google Scholar

[5] Akbarzadeh A, Samiei M, and Davaran S. 2012. Magnetic Nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7 144.

DOI: 10.1186/1556-276x-7-144

Google Scholar

[6] Neuberger T, Schöpf B, Hofmann H, Hofmann M and von Rechenberg B. 2005 Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293 483.

DOI: 10.1016/j.jmmm.2005.01.064

Google Scholar

[7] Yang L et al. 2008. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol. 4 439.

Google Scholar

[8] Bucak S, Yavuztürk B and Sezer A D. 2012. Recent Advances in Novel Drug Carrier Systems ed A D Sezer (Rijeka: InTech) p.165–200.

Google Scholar

[9] Xuan Nui Pham, Tan Phuoc, Tuyet Nhung Pham, Thi Thuy Nga Tran, and Thi Van Thi Tran 2016 Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7 045010.

DOI: 10.1088/2043-6262/7/4/045010

Google Scholar

[10] Sari A Y, Eko A S, Candra K, Denny P H, Ginting M, Sebayang P, and Simamora P. 2017. Syinthesi, properties and Application of Glucose Coated Fe3O4 Nanoparticles Prepared by Co-precipitation Method. Material Science and Engineering: Conf. Series 214 012021.

DOI: 10.1088/1757-899x/214/1/012021

Google Scholar

[11] Kurniawan C, Eko A S, Ayu Y S, Sihite P T A, Ginting M, Simamora P and Sebayang P. 2017. Synthesis and Characterization of Magnetic Elastomer based PEG-Coated Fe3O4 from Natural Iron Sand. Materials Science and Engineering: Conf. Series 202 012051.

DOI: 10.1088/1757-899x/202/1/012051

Google Scholar

[12] Gu H, Xu K, Xu C and Xu B. 2006. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 9 941–9.

DOI: 10.1039/b514130c

Google Scholar

[13] Phillips M A, Gran M L, Peppas N A. 2010. Targeted nanodelivery of drugs and diagnostics,, Nano Today, tom 5, p.143 – 159.

DOI: 10.1016/j.nantod.2010.03.003

Google Scholar

[14] Zhang Z, Boxall C and Kelsall G H. 1993. Photoelectrophoresis of colloidal iron oxides: 1. Hematite (α-Fe2O3). Colloids Surf. A73 145.

DOI: 10.1016/b978-1-85861-038-2.50014-0

Google Scholar

[15] Wu W, Xiao X H, Zhang S F, Zhou J A, Fan L X, Ren F and Jiang C Z 2010 Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties J. Phys. Chem. C 114 16092.

DOI: 10.1021/jp1010154

Google Scholar

[16] Lindgren T, Wang H, Beermann L, Vayssieres L, Hagfeldt A, and Lindquist S. 2002. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71(2) 231-234.

DOI: 10.1016/s0927-0248(01)00062-9

Google Scholar

[17] Chen J et al 2005. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17(5): pp.582-586.

DOI: 10.1002/adma.200401101

Google Scholar

[18] Huang Y, Ding D, Zhu M, Meng W, HuangY, Geng F, Li J, Tang C, Lei Z, Zhang Z, and Zhi C. 2015. Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci. Technol. Adv. Mater. 16 01480.

DOI: 10.1088/1468-6996/16/1/014801

Google Scholar

[19] Basavegowda N, Mishra K and Lee Y R. 2017. Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst. Adv. Nat. Sci: Nanosci. Nanotechnol. 8 6pp. 025017.

DOI: 10.1088/2043-6254/aa6885

Google Scholar

[20] Laudise R A 2004. Hydrothermal synthesis of crystals 50 Years Progress in Crystal Growth: A Reprint Collection (Amsterdam: Elsevier) p.185.

Google Scholar

[21] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V and Muller R N. 2008. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108 (2064).

DOI: 10.1021/cr068445e

Google Scholar

[22] Qi H, Yan B, Lu W, Li C and Yang Y. 2011. A non-alkoxide sol-gel method for the preparation of magnetite (Fe3O4) nanoparticles Curr. Nanosci. 7 381.

DOI: 10.2174/157341311795542426

Google Scholar

[23] Sreeja V and Joy P A. 2007. Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater. Res. Bull. 42 1570.

DOI: 10.1016/j.materresbull.2006.11.014

Google Scholar

[24] Jiang F Y, Wang C M, Fu Y and Liu R C. 2010. Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method. J. Alloys Compd. 503 L31.

DOI: 10.1016/j.jallcom.2010.05.020

Google Scholar

[25] Hu L, Percheron A, Chaumont D and Brachais C H. 2011. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J. Sol-Gel Sci. Technol. 60 198.

DOI: 10.1007/s10971-011-2579-4

Google Scholar

[26] Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W and Wende H. 2012. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method J. Phys. D: Appl. Phys. 45 195001.

DOI: 10.1088/0022-3727/45/19/195001

Google Scholar

[27] Wu S, Sun A Z, Zhai F Q, Wang J, Xu W H, Zhang Q and Volinsky A A 2011 Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 65 1882.

DOI: 10.1016/j.matlet.2011.03.065

Google Scholar

[28] Pereira Cet al. 2012. Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route Chem. Mater. 24 1496.

DOI: 10.1021/cm300301c

Google Scholar

[29] Shen L, Qiao Y, Guo, Y, Tan, J. 2012. Preparation and formation mechanism of nano-iron oxide black pigment from blast furnace flue dust, school of chemistry and chemical, Tianjin University 39 737 – 747.

DOI: 10.1016/j.ceramint.2012.06.086

Google Scholar

[30] Cuenca J A, Bugler K, Taylor S, Morgan D, Williams P, Bauer J, Porch A. 2016. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys.: Condens. Matter. 28 106002.

DOI: 10.1088/0953-8984/28/10/106002

Google Scholar

[31] Jaime Vega-Chacón, Gino Picasso, Luis Avilés-Félix and Miguel Jafelicci Jr. 2016. Influence of synthesis experimental parameters on the formation of magnetite nanoparticles prepared by polyol method.

DOI: 10.1088/2043-6262/7/1/015014

Google Scholar

[32] Chaki S H, Tasmira J Malek, Chaudhary MD, Tailor J P and Deshpande MP. 2015. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci.: Nanosci. Nanotechnol. 6 035009.

DOI: 10.1088/2043-6262/6/3/035009

Google Scholar

[33] Fahlepy M R, Tiwow V A, and Subaer. 2018. Characterization of Magnetite (Fe3O4) Minerals from Natural Iron Sand of Bonto Kanang Village Takalar for Ink Powder (Toner) Application. IOP Conf. Series: Journal of Physics: Conf. Series. 997. 012036.

DOI: 10.1088/1742-6596/997/1/012036

Google Scholar

[34] Lemine O. M, Sajieddine M, Bououdina M, Msalam R, Mufti S, Alyamani A. 2010. Rietvel analysis and Mössbauer spectroscopy studies of nanocrystalline hematite α-Fe2O3. Journal of Alloys and Compound. 502 279-282.

DOI: 10.1016/j.jallcom.2010.04.175

Google Scholar

[35] Colombo C, Palumbo G, Di Iorio E ,Song X, Jiang Z, Liu Q, Angelico R. 2015. Influence of hydrothermal synthesis conditions on size, morphology and colloidal properties of Hematite nanoparticles. Nano-Structures & Nano-Objects. 2 19-27.

DOI: 10.1016/j.nanoso.2015.07.004

Google Scholar

[36] Tiwow V A, Arsyad M, Palloan P and Rampe M J. 2018. Analysis of mineral content of iron sand deposit in Bontokanang village and Tanjung Bayang beach, South Sulawesi, Indonesia. IOP Conf. Series: Journal of Physics: Conf. Series. 997. 012036.

DOI: 10.1088/1742-6596/997/1/012010

Google Scholar

[37] Cornell R M and Schwertmann U. 2003. The Iron Oxides: Structures, Properties, Reactions, Occurences and Used (Weinheim: Wiley).

Google Scholar

[38] Bemana H and Rashid-Nadimi S. 2017. Effect of sulfur doping on photoelectrochemical performance of hematite. Electrochimica Acta. 229 396-403.

DOI: 10.1016/j.electacta.2017.01.150

Google Scholar

[39] Zhang Y, Dong K, Liu Z, Wang H, Ma S, Zhang A, Li M, Yu L, Li Y. 2017. Sulfurized hematite for photo-Fenton catalysis. Progress in Natural Science: Materials International. 27 443-451.

DOI: 10.1016/j.pnsc.2017.08.006

Google Scholar

[40] M. Gotic´, G. Drazˇic´, and S. Music´. 2011. Hydrothermal synthesis of a-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+. Journal of Molecular Structure. 993 167-176.

DOI: 10.1016/j.molstruc.2010.12.063

Google Scholar