Platelets and Hematocrit in the Survival Model of Dengue Hemorrhagic Fever (DHF) Sufferers in Palopo

Article Preview

Abstract:

This study aims to apply cox regression analysis to predict the patient's survival to dengue disease occurring in Palopo. This study uses clinical data, namely the results of laboratory tests to determine the effect on the patient's healing period. Laboratory test results used are platelets and hematocrit. By using the MPLE method to obtain parameter estimation in the cox regression model, it is known that platelets have a stronger effect for patient resistance on DHF than hematocrit. This is based on the p-value obtained from the analysis less than alpha (0.05), which is equal to 0.0433. Patients who had an average platelet below normal when experiencing DHF are longer in their recovery period. In addition, patients with DHF ≤ 2 days, the probability to survive and recover was 90%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. K. Omurlu, K. Ozdamar, M. Ture. Comparison of Bayesian survival analysis and Cox regression analysis in simulated and breast cancer data sets. J. Expert Systems with Applications. 36 (2009) 11341–11346. https://doi.org/10.1016/j.eswa.2009.03.058.

DOI: 10.1016/j.eswa.2009.03.058

Google Scholar

[2] D. G. Kleinbaum, M. Klein, Survival Analysis A Self-Learning Text, third ed., Springer US, New York, (2012).

Google Scholar

[3] F. E. Ahmed, P. W. Vos, D. Holbert. Modeling survival in colon cancer: A methodological review. Molecular Cancer. 6 (2007) 1–12. https://doi.org/10.1186/1476-4598-6-15.

Google Scholar

[4] I. K. Omurlu, , M. Ture, F. Tokatli, F. The comparisons of random survival forests and Cox regression analysis with simulation and an application related to breast cancer. Expert Systems with Applications. 36 (2009) 8582–8588. https://doi.org/10.1016/j.eswa.2008.10.023.

DOI: 10.1016/j.eswa.2008.10.023

Google Scholar

[5] M. Chen, J. Ibrahim, Q. Shao. Maximum likelihood inference for the Cox regression model with applications to missing covariates. Journal of Multivariate Analysis. 100 (2009) 2018–2030. https://doi.org/10.1016/j.jmva.2009.03.013.

DOI: 10.1016/j.jmva.2009.03.013

Google Scholar

[6] W. Y. Tsai. Pseudo-partial likelihood for proportional hazards models with biased-sampling data. Biometrika. 96 (2009) 601–615. https://doi.org/10.1093/biomet/asp026.

DOI: 10.1093/biomet/asp026

Google Scholar

[7] K. Nagashima, Y. Sato. Information criteria for Firth's penalized partial likelihood approach in Cox regression models. Statistics in Medicine. 36 (2017) 3422–3436. https://doi.org/10.1002/sim.7368.

DOI: 10.1002/sim.7368

Google Scholar

[8] A. Ramezankhani, F. Bagherzadeh-Khiabani, D. Khalili, F. Azizi, F. Hadaegh. A new look at risk patterns related to coronary heart disease incidence using survival tree analysis: 12 Years Longitudinal Study. Scientific Reports. 7 (2017) 1–11. https://doi.org/10.1038/s41598-017-03577-0.

DOI: 10.1038/s41598-017-03577-0

Google Scholar

[9] A. Benedetto, C. Ercolani, M. Mottolese, F. Sperati, L. Pizzuti, P. Vici, P., … M. Maugeri-Saccà. Analysis of the ATR-Chk1 and ATM-Chk2 pathways in male breast cancer revealed the prognostic significance of ATR expression. Scientific Reports. 7 (2017) 1–10. https://doi.org/10.1038/s41598-017-07366-7.

DOI: 10.1038/s41598-017-07366-7

Google Scholar

[10] B. Poerwanto, R. Y. Fa'rifah, W. Sanusi, S. Side. A matlab code to compute prediction of survival trends in patients with DHF. Journal of Physics: Conference Series. 1028 (2018). https://doi.org/10.1088/1742-6596/1028/1/012113.

DOI: 10.1088/1742-6596/1028/1/012113

Google Scholar

[11] G. Roopashri, M. R. Vaishali, M. P. David, M. Baig, A. Navneetham, K. Venkataraghavan. Clinical and oral implications of dengue Fever: a review. Journal of International Oral Health : JIOH. 7 (2015) 69–73.

Google Scholar

[12] A. Ihwah. The Use of Cox Regression Model to Analyze the Factors that Influence Consumer Purchase Decision on a Product. Agriculture and Agricultural Science Procedia. 3 (2015) 78–83. https://doi.org/10.1016/j.aaspro.2015.01.017.

DOI: 10.1016/j.aaspro.2015.01.017

Google Scholar

[13] Lucio, P. S., Degallier, N., Servain, J., Hannart, A., Durand, B., Souza, R. N., Ribeiro, Z. M. A case study of the influence of local weather on Aedes aegypti ( L .) aging and mortality. J. Vector Ecol. 38 (2013) 20–37.

DOI: 10.1111/j.1948-7134.2013.12005.x

Google Scholar

[14] F. M. Ojeda, C. Müller, D. Börnigen, D. A. Trégouët, A. Schillert, M. Heinig, T. Zeller, R. B. Schnabel, Comparison of Cox Model Methods in A Low-dimensional Setting with Few Events. J. Genomics, Proteomics and Bioinformatics. 14 (2016) 235–243.

DOI: 10.1016/j.gpb.2016.03.006

Google Scholar

[15] T. L. Thein, Y. S. Leo, D. A. Fisher, J. G. Low, H. M. L. Oh, V. C. Gan, J. G. X. Wong, D. C. Lye. Risk factors for fatality among confirmed adult dengue inpatients in Singapore: A matched case-control study. PLoS ONE. 8 (2013)1-6. https://doi.org/10.1371/journal.pone.0081060.

DOI: 10.1371/journal.pone.0081060

Google Scholar