Consideration of the Torsional Stiffness in Hollow-Core Slabs’ Design

Article Preview

Abstract:

The paper discusses the principles of precast concrete hollow-core slabs taking into account their spatial work. It is shown that consideration of spatial work makes it possible to determine the forces in individual floor slabs significantly more precise. The fact that strain redistribution between precast floor slabs depends on slabs’ bending and torsional stiffness is shown. The research has been mostly devoted to determination of the bending stiffness with regard to formation of cracks and the change in torsional stiffness, especially considering the presence of normal cracks, which is still unstudied. This paper presents the technique for determining the torsional stiffness of hollow-core slabs with normal cracks. In order to determine the components included in the resolving system of equations, it is proposed to use an approximation method based on the processing of numerical data using spatial finite elements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-341

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Derkowski, Large panels buildings – the possibilities of modern precast industry, Cement, Wapno, Beton, CWB-5/2017: 414-425.

Google Scholar

[2] W. Derkowski, M. Surma, Complex stress state in prestressed hollow core slabs, Recent Advances in Civil Engineering: Building Structures, CUT Monography 478, 2015: 11-27.

Google Scholar

[3] W. Derkowski, M. Surma, Influence of concrete topping on the work of prestressed hollow core slabs on flexible supports, Proceedings of 4th International fib Congress 2014, FIB, Mombai, India, 2014: 339-341.

DOI: 10.35784/bud-arch.2180

Google Scholar

[4] W. Derkowski, M. Surma, Torsion of precast hollow core slabs, Technical Transactions Civil Engineering 3-B/2015: 31-43.

Google Scholar

[5] M. Surma, W. Derkowski, A. Cholewicki, Analytical model for determining the influence of support flexibility on shear capacity of hollow core slabs, MATEC Web of Conferences, 262, 08005 (2019).

DOI: 10.1051/matecconf/201926208005

Google Scholar

[6] T.N. Azizov, N.N. Sribnyak, Opredeleniye krutilnoy zhestkosti zhelezobetonnykh elementov pryamougolnogo secheniya s normalnimi treschinami, Resursoekonomni materialy, konstrukcii budivli ta sporudy, 16, p.2 (2008) 8-17. (in Russian).

Google Scholar

[7] T.N. Azizov, Prostranstvennaya rabota zhelezobetonnykh perekrytii. Teoriya I metody rascheta, Diss. DSc (tech), Poltava, 2006. (in Russian).

Google Scholar

[8] T.N. Azizov, Uchet nelineynikh svoystv betona pri kruchenii zhelezobetonnykh sterzhnevykh elementov, Sciences of Europe, V. 1, 35 (2019) 19-22. (in Russian).

Google Scholar

[9] T.N. Azizov, Opredeleniye krutilnoy zhestkosti zhelezobetonnykh elementov s treschinami, Dorogy I mosty. Zbirnyk naukovykh prats, 7 V. 1 (2007) 3-8. (in Russian).

Google Scholar

[10] A.I. Vereschagina, Napryazhenno-deformirovannoe sostoyanie I prochnost sbornykh zhelezobetonnykh perekrytii, Diss. PhD (tech), Sumy, 2002. (in Russian).

Google Scholar

[11] DBN V.2.6-98:2009, Konstrukcii budynkiv I sporud. Betonni ta zalizobetonni konstrukcii. Osnovni polozhennya, Minregionbud, Kyiv, 2011. (in Ukrainian).

Google Scholar

[12] P.F. Drozdov, Konstruirovanie I raschet nesuschikh system mnogoetazhnykh zdaniy I ih elementov, Stroyizdat, Moscow, 1977. (in Russian).

Google Scholar

[13] N.I. Karpenko, Obschie modeli mehaniki zhelezobetona, Stroyizdat, Moscow, 1996. (in Russian).

Google Scholar

[14] Rekomendatsii po proektirovaniyu stalnykh zakladnykh detaley dlya zhelezobetonnykh konstruktsii, Stroyizdat, Moscow, 1984. (in Russian).

Google Scholar

[15] A.S. Semchenkov, Eksperimentalniye issledovaniya sbornykh zhelezobetonnykh perekrytii, opertykh po konturu, TsNIIEP zhilischa, Moscow, 1981. (in Russian).

Google Scholar

[16] S.P. Timoshenko, Kurs teorii uprugosti, Naukova dumka, Kyiv, 1972. (in Russian).

Google Scholar

[17] B.E. Ulitskiy, Prostranstvennie raschety balochnykh mostov, Avtotransizdat, Moscow, 1962. (in Russian).

Google Scholar

[18] O.F. Yaremenko, Yu.O. Shkola, Nesucha zdatnist ta deformatyvnist zalizobetonnykh sterzhnevykh elementiv v skladnomu napruzhennomu stani, Even, Odesa, 2010. (in Ukrainian).

Google Scholar

[19] A.F. Yaremenko, A.M. Chuchmai, N.A. Yaremenko, Inzhenernaya metodika opredeleniya krutilnoy zhestkosti zhelezobetonnykh balok s normalnymi treschinami, Visnyk Odeskoyi derzhavnoyi akademii budivnytstva ta arhitektury, 33 (2009) 146-151. (in Russian).

Google Scholar

[20] T. Azizov, O. Melnik, Calculation of reinforced concrete ceilings with normal cracks accounting the Chebyshev approximation, 6 th International Scientific Conference Reliability and Durability of Railway Transport Engineering Structures and Buildings,, (2017) 1-7.

Google Scholar

[21] T.N. Azizov, Effect of torsional rigidity of concrete elements with normal cracks onto special work of bridges and floorings, International Science Ukrainian Edition, 3 (2010) 55-59.

Google Scholar

[22] H.J. Cowan, Kruchenie v obychnom i predvaritel'no napriazhennom zhelezobetone, Stroyizdat, Moscow, 1972. (in Russian).

Google Scholar

[23] D. Kochkarev, T. Azizov, T. Galinska, Bending deflection reinforced concrete elements determination, MATEC Web of Conferences, (2018).

DOI: 10.1051/matecconf/201823002012

Google Scholar

[24] ENV 1992-1. Euroсode 2. Design of concrete structure. Part 1, General rules and rules for buildings, GEN, (1993).

Google Scholar