Experimental and Computer Researches of Ferroconcrete Floor Slabs at High-Temperature Influences

Article Preview

Abstract:

The unsatisfactory technical condition of many buildings and structures is due to their aging and requires a quick technical condition assessment. The most promising way for experimental researches data verification is computer modeling of structures, also during a fire. It is advisable to use the ANSYS software. Experimental fire tests of reinforced concrete slabs were carried out. In order to assess the experiment quality and the reliability of the received temperature distribution data, it was used a reinforced concrete slab computer simulation in the ANSYS R.17.1 software system. There was provided a comparative analysis of experimental studies results and numerical data analysis. The results confirm that method of conducted experimental research and computer simulation with further numerical analysis can be recommended for practical application. The mathematical model makes possible operative prediction for the controlled parameters values of building structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-367

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Tiutiunyk, H.V. Ivanets, I.A. Tolkunov, E.I. Stetsyuk, System approach for readiness assessment units of civil defense to actions at emergency situations, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 1 (2018) 99-105.

DOI: 10.29202/nvngu/2018-1/7

Google Scholar

[2] M.I. Vasiliev, I.O. Movchan, O.M. Koval, Diminishing of ecological risk via optimization of fire-extinguishing system projects in timber-yards, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 5 (2014) pp.106-113.

DOI: 10.29202/nvngu

Google Scholar

[3] Y. Otrosh, A. Kovaliov, O. Semkiv, I. Rudeshko, V. Diven, Methodology remaining lifetime determination of the building structures, MATEC Web of Conferences. 230 (2018) 02023.

DOI: 10.1051/matecconf/201823002023

Google Scholar

[4] Lakhani, Hitesh & Kamath, Praveen & Bhargava, Pradeep & Sharma, Umesh Kumar & Reddy, G Rami, Thermal Analysis of Reinforced Concrete Structural Elements, Journal of Structural Fire Engineering. 4 (2013) 227-244.

DOI: 10.1260/2040-2317.4.4.227

Google Scholar

[5] Li Bai, Li & Song, Tao, Failure Analysis of Reinforced Concrete Columns after High Temperature, Applied Mechanics and Materials. 157-158 (2012) 1578-1581. 10.4028/www.scientific.net/AMM.157-158.1578.

DOI: 10.4028/www.scientific.net/amm.157-158.1578

Google Scholar

[6] Zhang, X & Xiao, Yan & Kunnath, S.K., State of the art and prospect of research on fire resistance behavior of reinforced concrete columns. 24 (2015) 120-131. 10.13577/j.jnd.2015.0316.

Google Scholar

[7] Dilek, Ufuk, Assessment of Fire Damage to a Reinforced Concrete Structure during Construction, Journal of Performance of Constructed Facilities - J PERFORM CONSTR FACIL. 21 (2007). 10.1061/(ASCE)0887-3828(2007)21:4(257).

DOI: 10.1061/(asce)0887-3828(2007)21:4(257)

Google Scholar

[8] I. Korneeva, S. Neutov, M. Suriyaninov, Experimental studies of fiber concrete creep, MATEC Web of Conferences. 116 (2017) 02021.

DOI: 10.1051/matecconf/201711602021

Google Scholar

[9] M. Surianinov, O. Shyliaiev, Calculation of plate-beam systems by method of boundary elements, International Journal of Engineering and Technology(UAE). 7(2) (2018) 238-241.

DOI: 10.14419/ijet.v7i2.23.11927

Google Scholar

[10] A.F. Dashhenko, D.V. Lazareva, N.G. Sur'janinov, ANSYS v zadachah inzhenernoj mehaniki, Odessa, 2011 [in Russian].

Google Scholar

[11] N.N. Fedorova, S.A. Val'ger, M.N. Danilov, Ju.V Zaharova, Osnovy raboty v ANSYS 17, Moskva, 2017 [in Russian].

Google Scholar

[12] DSTU B V.1.1–20: 2007 Zakhyst vid pozhezhi. Perekryttia ta pokryttia. Metod vyprobuvan na vohnestiikist (EN 1365-2: 1999, NEQ). Kyiv, 2007 [in Ukrainian].

Google Scholar

[13] DSTU B V.1.1–4–98* Zakhyst vid pozhezhi. Budivelni konstruktsii. Metody vyprobuvan na vohnestiikist. Zahalni vymohy. Kyiv, 2005 [in Ukrainian].

Google Scholar

[14] V. Andronov, B. Pospelov, E. Rybka, Increase of accuracy of definition of temperature by sensors of fire alarms in real conditions of fire on objects, EasternEuropean Journal of Enterprise Technologies. 4 (5-82) (2016) pp.38-44.

DOI: 10.15587/1729-4061.2016.75063

Google Scholar

[15] V. Andronov, B. Pospelov, E. Rybka, S. Skliarov, Examining the learning fire detectors under real conditions of application, EasternEuropean Journal of Enterprise Technologies, 3 (9-87) (2017) pp.53-59.

DOI: 10.15587/1729-4061.2017.101985

Google Scholar

[16] DBN V.1.1-7:2016 (2017). Pozhezhna bezpeka obiektiv budivnytstva. Kyiv [in Ukrainian].

Google Scholar