Determination of the Stress State of the Layer with a Cylindrical Elastic Inclusion

Article Preview

Abstract:

A spatial problem of the theory of elasticity for the layer with an infinite round cylindrical inclusion is investigated. At the boundaries of the layer, displacements are given. The cylindrical elastic inclusion is rigidly coupled with the layer and their boundary surfaces do not intersect. The solution to the spatial problem is obtained by the generalized Fourier method, with regard to the Lamé system of equations. The obtained infinite systems of linear algebraic equations are solved by a reduction method. As a result, the values ​​of displacements and stresses in the elastic body are determined. A comparative analysis of the stress state for different geometrical parameters is carried out, and a comparison is made with the stress state in the layer with a cylindrical cavity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-420

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Aitharaju, S. Aashat, H. Kia, A. Satyanarayana, P. Bogert, Progressive damage modeling of notched composites, NASA Technical Reports Server (2016) URL: https://ntrs.nasa.gov/archive/ nasa/casi. ntrs.nasa.gov/20160012242.pdf.

DOI: 10.1108/09504120610647500

Google Scholar

[2] A. YU. Yershova, M. I. Martirosov, Eksperimental'nyye issledovaniya polimernykh kompozitov s melkodispersnym napolnitelem (ispytaniya na rastyazheniye-szhatiye), Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 5 (2014) 61—69.

Google Scholar

[3] B. L. Pelekh, R. N. Makhnitskii, Approximate methods for solving problems on the concentration of stresses around apertures in Orthotropic disks made out of composite materials, Mechanics of Composite Materials. 16, Iss.6 (1981) 690—693.

DOI: 10.1007/bf00606258

Google Scholar

[4] B. E. Pobedrya, V. I. Gorbachev, Stress and strain concentration in composite materials, Mechanics of Composite Materials. 20, Iss.2 (1984) 141—148.

DOI: 10.1007/bf00610353

Google Scholar

[5] B. D. Annin, V. N. Maksimenko, Evaluation of the failure of plates made of composite materials with holes, Mechanics of Composite Materials. 25, Iss.2 (1989) 216—222.

DOI: 10.1007/bf00616267

Google Scholar

[6] A.N. Huzʹ, V.D. Kubenko, M.A. Cherevko, Dyfraktsyya upruhykh voln, Nauk. Dumka, Kyiv (1978).

Google Scholar

[7] V. T. Grinchenko, V. V. Meleshko, Garmonicheskiye kolebaniya i volny v uprugikh telakh, Nauk. Mneniye, Kyiv, (1981).

Google Scholar

[8] V.T. Grinchenko, A.F. Ulitko, An exact solution of the problem of stress distribution close to a circular hole in an elastic layer, Soviet Applied Mechanics. 4, № 10 (1968) 31 – 37.

DOI: 10.1007/bf00886618

Google Scholar

[9] V.T. Grinchenko, A. F. Ulitko, Prostranstvennyye zadachi teorii uprugosti i plastichnosti. Ravnovesiye uprugikh tel kanonicheskoy formy, Nauk. Dumka, Kyiv, (1985).

Google Scholar

[10] V.V. Volchkov, D. S. Vukolov, V. I. Storozhev, Difraktsiya voln sdviga na vnutrennikh tunnel'nykh tsilindricheskikh neodnorodnostyakh v vide polosti i vklyucheniya v uprugom sloye so svobodnymi granyami, Mekhanika tverdogo tela. 46 (2016) 119 – 133.

Google Scholar

[11] A.G. Nikolayev, V.S. Protsenko, Obobshchennyy metod Fur'ye v prostranstvennykh zadachakh teorii uprugosti, Nats. aerokosm. universitet im. N.Ye. Zhukovskogo «KHAI», Khar'kov, (2011).

Google Scholar

[12] A. H. Nykolaev, E. M. Orlov, Reshenye pervoy osesymmetrychnoy termoupruhoy kraevoy zadachy dlya transversalʹno-yzotropnoho poluprostranstva so sferoydalʹnoy polostʹyu, Problemy obchyslyuvalʹnoyi mekhaniky i mitsnosti konstruktsiy. 20 (2012) 253-259.

Google Scholar

[13] V. Yu. Miroshnikov, First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities. Journal of Mechanical Engineering. 21, № 2 (2018) 12 – 18.

DOI: 10.15407/pmach2018.02.012

Google Scholar

[14] V. Protsenko, V. Miroshnikov, Investigating a problem from the theory of elasticity for a half-space with cylindrical cavities for which boundary conditions of contact type are assigned, Eastern-European Journal of Enterprise Technologies. Applied mechanics. Vol 4, № 7 (2018) 43 – 50.

DOI: 10.15587/1729-4061.2018.139567

Google Scholar

[15] A. G. Nikolayev, A. YU. Shcherbakova, A. I. Yukhno, Deystviye sosredotochennoy sily na transversal'no-izotropnoye poluprostranstvo s paraboloidal'nym vklyucheniyem, Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov. Sb. nauch. tr. Nats. ayerokosm. un-ta im. N. Ye. Zhukovskogo «KHAI». Vyp. 2 (2006) 47-51.

Google Scholar

[16] A. H. Nykolaev, E. A. Tanchyk, Raspredelenye napryazhenyy v yacheyke odnonapravlennoho kompozytsyonnoho materyala, obrazovannoho chetyrʹmya tsylyndrycheskymy voloknamy, Visnyk Odesʹkoho natsionalʹnoho universytetu. Matematyka. Mekhanika. T.18, Vyp. 4 (2013) 101–111.

Google Scholar