[1]
R. Luo, Formulating frequency of uniform beams with tip mass under various axial loads, Journal of Mechanical Engineering Science. 228 (2013), 67–76.
DOI: 10.1177/0954406213482065
Google Scholar
[2]
S. Naguleswaran, Vibration and stability of uniform Euler-Bernoulli beams with step change in axial force, International Journal of Mechanical Engineering Education. 33 (2005), 64–76.
DOI: 10.7227/ijmee.33.1.7
Google Scholar
[3]
G. Şcedilakar, The effect of axial force on the free vibration of an Euler-Bernoulli beam carrying a number of various concentrated elements, Shock and Vibration. 20 (2013), 357–367.
DOI: 10.1155/2013/735061
Google Scholar
[4]
E. Ghandi, B. Rafezy, The effect of axial loads on free vibration of symmetric frame structures using continuous system method, Journal of Structural and Construction engineering. 3 (2016), 86–100.
Google Scholar
[5]
Yu. Yesilce, O. Demirdag, Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems, International Journal of Mechanical Sciences. 50 (2008), 995–1003.
DOI: 10.1016/j.ijmecsci.2008.03.001
Google Scholar
[6]
A. Nandi, S. Neogy, D. Roy, А simple experiment to demonstrate the effect of axial force on natural frequency of transverse vibration of a beam, International Journal of Mechanical Engineering Education. 38 (2010), 1–8.
DOI: 10.7227/ijmee.38.1.1
Google Scholar
[7]
S. Lajimi, G. R. Heppler, Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body, Transactions of the Canadian Society for Mechanical Engineering. 37 (2013), 89–109.
DOI: 10.1139/tcsme-2013-0006
Google Scholar
[8]
S. Uzny, K. Sokół, Free Vibrations of Column Subjected to Euler's Load with Consideration of Timoshenko's Theory, Vibrations in Physical Systems. 26 (2014), 319–326.
Google Scholar
[9]
V. I. Zharnitskiy, Sh. Sh. Sharipov, Poperechnye kolebaniya sooruzheniy s ucheton verticalnoy nagruzki ot sobstvennoho vesa, Earthquake engineering. Constructions safety, 3 (2013), 28–30 [in Russian].
Google Scholar
[10]
I. M. Babakov, Theory of Vibrations, Drofa, Moskow, 2004 [in Russian].
Google Scholar
[11]
B. Balachandran, E. B. Magrab, Vibrations, Cengage Learning, (2008).
Google Scholar
[12]
S. S. Rao, Mechanical vibrations, 5th Edition, Pearson Education, (2010).
Google Scholar
[13]
F. J. Shaker, Effect of axial load on mode shapes and frequencies of beams, Lewis Research Center Report NASA. December, (1975).
Google Scholar
[14]
Jr, W. Weaver, S. P. Timoshenko, D. H. Young, Vibration problems in engineering, John Wiley & Sons, (1990).
Google Scholar
[15]
M. V. Vasilenko, O. M. Alekseychuk, Teoriya kolyvan' i stiykosti ruhu, Vyscha shkola, 2004. [in Ukrainian].
Google Scholar
[16]
E. Ye. Khachiyan, Seysmicheskoye vozdeystvie na vysotnyie zdaniya i sooruzheniya, Ayastan, 1973 [in Russian].
Google Scholar
[17]
Yu. Krutii, M. Suriyaninov, V. Vandynskyi, Exact solution of the differential equation of transverse oscillations of the rod taking into account own weight, MATEC Web of Conferences. Vol. 116 (2017), p.02022.
DOI: 10.1051/matecconf/201711602022
Google Scholar
[18]
Yu. Krutii, M. Suriyaninov, V. Vandynskyi, Analytic formulas for the natural frequencies of hinged structures with taking into account the dead weight, MATEC Web of Conferences. Vol. 230 (2018), p.02016.
DOI: 10.1051/matecconf/201823002016
Google Scholar
[19]
V. P. Ilyin, A. M. Karpov, A. M. Maslennikova, Chislennye metody resheniya zadach stroitelnoy mekhaniki, Vysheyshaya shkola, 1990 [in Russian].
Google Scholar
[20]
C. M. Wang, C. Y. Wang, J. N. Reddy, Exact solutions for buckling of structural members, CRC series in computational mechanics and applied analysis, (2005).
Google Scholar
[21]
N. S. Volmir, Ustoychivost uprugih system, Fizmatgiz, 1963 [in Russian].
Google Scholar
[22]
M. Lalanne, P. Berthier, J. Der Hagopian, Mechanical Vibrations for Engineers, John Wiley & Sons, (1984).
Google Scholar