Exact Solution of the Problem of Elastic Bending of a Multilayer Beam under the Action of a Normal Uniform Load

Article Preview

Abstract:

An exact solution of the theory of elasticity is presented for the problem of a narrow multilayer bar section transverse bending under the action of a normal uniform load on longitudinal faces. The solution is built using the principle of superposition, by imposing common solutions to the problems of bending a multilayer cantilever with uniform loads on the longitudinal faces and an arbitrary load on the free end, and allows to take into account the orthotropy of the materials of the layers, as well as transverse shear deformation and compression. On the basis of a built-in general solution, a number of particular solutions are obtained for multi-layer beams with various ways of the ends fixing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

475-485

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Timpe, Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion, Z. Math. Physik. 52. 348-383 (1905).

Google Scholar

[2] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edition. McGraw Hill, New York, (1970).

Google Scholar

[3] H.-J. Ding, D.-J. Huang, H.-M. Wang, Analytical solution for fixed-end beam subjected to uniform load, Journal of Zhejiang University: Science. 6A(8). 779-783 (2005).

DOI: 10.1631/jzus.2005.a0779

Google Scholar

[4] C.-X. Zhan, Y.-H. Liu, Plane elasticity solutions for beams with fixed ends, Journal of Zhejiang University: Science A. 16(10). 805-819 (2015).

DOI: 10.1631/jzus.a1500043

Google Scholar

[5] S.G. Lekhnitskii, Anisotropic Plate, Gordon and Breach, New York, (1968).

Google Scholar

[6] H.J. Ding, D.J. Huang, W.Q. Chen, Elasticity solutions for plane anisotropic functionally graded beams, International Journal of Solids and Structures. 44(1). 176-196 (2007).

DOI: 10.1016/j.ijsolstr.2006.04.026

Google Scholar

[7] A.M. Jiang, H.J. Ding, The analytical solutions for orthotropic cantilever beams (II): solutions for density functionally graded beams, Journal of Zhejiang University (SCIENCE). 6A(3). 155-158 (2005).

DOI: 10.1631/jzus.2005.a0155

Google Scholar

[8] D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load, Journal of Zhejiang University: Science A, 8(9). 1351-1355 (2007).

DOI: 10.1631/jzus.2007.a1351

Google Scholar

[9] Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Composites Science and Technology. 67(3-4). 481-488 (2007).

DOI: 10.1016/j.compscitech.2006.08.023

Google Scholar

[10] A. Daneshmehr, S. Momeni, M.R. Akhloumadi, Exact elasticity solution for the density functionally gradient beam by using airy stress function, Applied Mechanics and Materials. 110-116. 4669-4676 (2012).

DOI: 10.4028/www.scientific.net/amm.110-116.4669

Google Scholar

[11] Q. Yang, B.L. Zheng, K. Zhang, J. Li, Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads, Applied Mathematical Modelling. 38(4). 1403-1416 (2014).

DOI: 10.1016/j.apm.2013.08.021

Google Scholar

[12] S. Benguediab, A. Tounsi, H.H. Abdelaziz, M.A.A. Meziane, Elasticity solution for a cantilever beam with exponentially varying properties. Journal of Applied Mechanics and Technical Physics, 58(2), 354-361 (2017).

DOI: 10.1134/s0021894417020213

Google Scholar

[13] M. Wang, Y. Liu, Analytical solution for bi-material beam with graded intermediate layer, Composite Structures. 92. 2358-2368 (2010).

DOI: 10.1016/j.compstruct.2010.03.013

Google Scholar

[14] A.V. Gorik, Modeling Transverse Compression of Cylindrical Bodies in Bending, International Applied Mechanics. 37(9). 1210-1221 (2001).

Google Scholar

[15] U.A. Girhammar, D.H. Pan, Exact static analysis of partially composite beams and beam-columns, International Journal of Mechanical Sciences. 49(2). 239-255 (2007).

DOI: 10.1016/j.ijmecsci.2006.07.005

Google Scholar

[16] W. Zhen, C. Wanji, A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams, Composite Structures. 158. 128-136 (2016).

DOI: 10.1016/j.compstruct.2016.09.021

Google Scholar

[17] D. Zhao, Z. Wu, X. Ren, New Sinusoidal Higher-Order Theory Including the Zig-Zag Function for Multilayered Composite Beams. Journal of Aerospace Engineering. 32(3). (2019).

DOI: 10.1061/(asce)as.1943-5525.0000994

Google Scholar

[18] A.V. Goryk, S.B. Kovalchuk, Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end, Mechanics of Composite Materials. 54(2). 179-190 (2018).

DOI: 10.1007/s11029-018-9730-z

Google Scholar

[19] A.V. Goryk, S.B. Koval'chuk, Solution of a Transverse Plane Bending Problem of a Laminated Cantilever Beam Under the Action of a Normal Uniform Load, Strength of Materials. 50(3). 406-418 (2018).

DOI: 10.1007/s11223-018-9984-7

Google Scholar