[1]
A. Timpe, Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion, Z. Math. Physik. 52. 348-383 (1905).
Google Scholar
[2]
S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edition. McGraw Hill, New York, (1970).
Google Scholar
[3]
H.-J. Ding, D.-J. Huang, H.-M. Wang, Analytical solution for fixed-end beam subjected to uniform load, Journal of Zhejiang University: Science. 6A(8). 779-783 (2005).
DOI: 10.1631/jzus.2005.a0779
Google Scholar
[4]
C.-X. Zhan, Y.-H. Liu, Plane elasticity solutions for beams with fixed ends, Journal of Zhejiang University: Science A. 16(10). 805-819 (2015).
DOI: 10.1631/jzus.a1500043
Google Scholar
[5]
S.G. Lekhnitskii, Anisotropic Plate, Gordon and Breach, New York, (1968).
Google Scholar
[6]
H.J. Ding, D.J. Huang, W.Q. Chen, Elasticity solutions for plane anisotropic functionally graded beams, International Journal of Solids and Structures. 44(1). 176-196 (2007).
DOI: 10.1016/j.ijsolstr.2006.04.026
Google Scholar
[7]
A.M. Jiang, H.J. Ding, The analytical solutions for orthotropic cantilever beams (II): solutions for density functionally graded beams, Journal of Zhejiang University (SCIENCE). 6A(3). 155-158 (2005).
DOI: 10.1631/jzus.2005.a0155
Google Scholar
[8]
D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load, Journal of Zhejiang University: Science A, 8(9). 1351-1355 (2007).
DOI: 10.1631/jzus.2007.a1351
Google Scholar
[9]
Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Composites Science and Technology. 67(3-4). 481-488 (2007).
DOI: 10.1016/j.compscitech.2006.08.023
Google Scholar
[10]
A. Daneshmehr, S. Momeni, M.R. Akhloumadi, Exact elasticity solution for the density functionally gradient beam by using airy stress function, Applied Mechanics and Materials. 110-116. 4669-4676 (2012).
DOI: 10.4028/www.scientific.net/amm.110-116.4669
Google Scholar
[11]
Q. Yang, B.L. Zheng, K. Zhang, J. Li, Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads, Applied Mathematical Modelling. 38(4). 1403-1416 (2014).
DOI: 10.1016/j.apm.2013.08.021
Google Scholar
[12]
S. Benguediab, A. Tounsi, H.H. Abdelaziz, M.A.A. Meziane, Elasticity solution for a cantilever beam with exponentially varying properties. Journal of Applied Mechanics and Technical Physics, 58(2), 354-361 (2017).
DOI: 10.1134/s0021894417020213
Google Scholar
[13]
M. Wang, Y. Liu, Analytical solution for bi-material beam with graded intermediate layer, Composite Structures. 92. 2358-2368 (2010).
DOI: 10.1016/j.compstruct.2010.03.013
Google Scholar
[14]
A.V. Gorik, Modeling Transverse Compression of Cylindrical Bodies in Bending, International Applied Mechanics. 37(9). 1210-1221 (2001).
Google Scholar
[15]
U.A. Girhammar, D.H. Pan, Exact static analysis of partially composite beams and beam-columns, International Journal of Mechanical Sciences. 49(2). 239-255 (2007).
DOI: 10.1016/j.ijmecsci.2006.07.005
Google Scholar
[16]
W. Zhen, C. Wanji, A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams, Composite Structures. 158. 128-136 (2016).
DOI: 10.1016/j.compstruct.2016.09.021
Google Scholar
[17]
D. Zhao, Z. Wu, X. Ren, New Sinusoidal Higher-Order Theory Including the Zig-Zag Function for Multilayered Composite Beams. Journal of Aerospace Engineering. 32(3). (2019).
DOI: 10.1061/(asce)as.1943-5525.0000994
Google Scholar
[18]
A.V. Goryk, S.B. Kovalchuk, Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end, Mechanics of Composite Materials. 54(2). 179-190 (2018).
DOI: 10.1007/s11029-018-9730-z
Google Scholar
[19]
A.V. Goryk, S.B. Koval'chuk, Solution of a Transverse Plane Bending Problem of a Laminated Cantilever Beam Under the Action of a Normal Uniform Load, Strength of Materials. 50(3). 406-418 (2018).
DOI: 10.1007/s11223-018-9984-7
Google Scholar