A Study on Influence of Underwater Friction Stir Welding on Microstructural, Mechanical Properties and Formability in 5052-O Aluminium Alloys

Article Preview

Abstract:

Friction stir welding (FSW), a solid-state joining process is extensively using in the welding of aluminum alloy sheets. In order to save energy and reduce emission, lightweight materials like aluminum alloys were introduced into steel car body, which requires the development of effective joining processes. In the present study, welding was carried out in two different conditions, in the air (CFSW) and underwater (UWFSW) at various welding speeds to weld 5052-O aluminum alloy sheets. The effect of UWFSW on microstructural developments, mechanical properties, and formability was evaluated and compared. Grain refinement is an important opportunity to improve the mechanical properties of FS welds. Considerable grain refinement was obtained in UWFSW joints, which is smaller than that in the CFSW joints. The results indicated an increase in tensile strength, hardness, the percentage of elongation, and formability of UWFSW weld sheets. The results of the tensile test, hardness test, microstructure and fractography as in good correlation with improved properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. 50 (2005) 1-78.

Google Scholar

[2] D. Avula, V. Devuri, M. Cheepu, D.K. Dwivedi, Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds, IOP Conf. Ser. Mater. Sci. Eng. 330 (2017) 012081.

DOI: 10.1088/1757-899x/330/1/012081

Google Scholar

[3] D. Venkateswarulu, M. Cheepu, D. Krishnaja, S. Muthukumaran, Influence of water cooling and post-weld aging on mechanical and microstructural properties of the friction-stir welded 6061 aluminium alloy joints. Appl. Mech. Mater. 877 (2018) 163-176.

DOI: 10.4028/www.scientific.net/amm.877.163

Google Scholar

[4] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia. Mater. Sci. 5 (2014) 1120-1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[5] M.M. Cheepu, V. Muthupandi, S. Loganathan, Friction welding of titanium to 304 stainless steel with electroplated nickel interlayer, Mater. Sci. Forum. 710 (2012) 620-625.

DOI: 10.4028/www.scientific.net/msf.710.620

Google Scholar

[6] K. Tejonadha Babu, S. Muthukumaran, C.H. Bharat Kumar, A study on grain size, mechanical properties and first mode of metal transfer in underwater friction stir welded AA5052-O, Key Eng. Mat. 775(2018)466-472.

DOI: 10.4028/www.scientific.net/kem.775.466

Google Scholar

[7] K. Tejonadha Babu, P. Kranthi Kumar, S. Muthukumaran, Mechanical, metallurgical characteristics and corrosion properties of friction stir welded AA6061-T6 using pure commercial aluminum as a filler plate, Procedia. Mater. Sci. 6(2014)648-655.

DOI: 10.1016/j.mspro.2014.07.080

Google Scholar

[8] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Evaluation of microstructures and mechanical properties of dissimilar materials by friction welding, Procedia. Mater. Sci. 5 (2014) 1107-1113.

DOI: 10.1016/j.mspro.2014.07.404

Google Scholar

[9] B. Abnar, M. Kazeminezhad, A.H. Kokabi, Effects of heat input in friction stir welding on microstructure and mechanical properties of AA3003-H18 plates, Trans. Nonferrous Metals Soc. China. 25 (2015) 2147-2155.

DOI: 10.1016/s1003-6326(15)63826-2

Google Scholar

[10] S. Benavides, Y. Li, L. Murr, D. Brown, J. Mcclure, Low-temperature friction-stir welding of 2024 aluminum, Scripta mater. 41(1999) 809-815.

DOI: 10.1016/s1359-6462(99)00226-2

Google Scholar

[11] F. Chai, D. Zhang, Y. Li, Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy, J. Magnesium, and Alloys. 3 (2015) 203-209.

DOI: 10.1016/j.jma.2015.08.001

Google Scholar

[12] D. C. Hofmann, C. Douglas, S. Kenneth, Thermal history analysis of friction stir processed and submerged friction stir processed aluminum, Mater. Sci. Eng. 465 (2007) 165-175.

DOI: 10.1016/j.msea.2007.02.056

Google Scholar

[13] Y. Zhao, Z. Lu, K. Yan, L. Huang, Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys, Mater. Des. 65 (2015) 675-681.

DOI: 10.1016/j.matdes.2014.09.046

Google Scholar

[14] W. S Miller, L. Zhuang, J Bottema, A. J. Witteebrood, P. E. Smet, A. Haszler, A. Vieregge, Recent development in Al alloys for the automotive industry, Mater. Sci. Eng. 280 (2000) 37-49.

DOI: 10.1016/s0921-5093(99)00653-x

Google Scholar

[15] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, Inter. J. Mater. Res. 105 (2014) 350-357.

DOI: 10.3139/146.111031

Google Scholar

[16] A. Shiva, M. Cheepu, V.C. Kantumuchu, K.R. Kumar, D. Venkateswarlu, B. Srinivas, S. Jerome, Microstructure characterization of Al-TiC surface composite fabricated by friction stir processing. IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018) 012060.

DOI: 10.1088/1757-899x/330/1/012060

Google Scholar

[17] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[18] K. Devireddy, V. Devuri, M. Cheepu, B.K. Kumar, Analysis of the influence of friction stir processing on gas tungsten arc welding of 2024 aluminum alloy weld zone. Int. J. Mech. Prod. Eng. Res. Dev. 8(1) (2018) 243-252.

DOI: 10.24247/ijmperdfeb201828

Google Scholar

[19] D. Venkateswarlu, M. Cheepu, M.M. Mahapatra, Analysing the friction stir welded joints of AA2219 Al-Cu alloy in different heat-treated-state. IOP Conf. Ser. Mater. Sci. Eng. 330 (1) (2018) 012074.

DOI: 10.1088/1757-899x/330/1/012074

Google Scholar

[20] Y. Zhao, S. Jiang, S. Yang, Z. Lu, K. Yan, Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding, Int. J. Adv. Manuf. Technol. 83 (2016) 673-679.

DOI: 10.1007/s00170-015-7624-y

Google Scholar

[21] Y. J. Kwon, S. B. Shim, D. H. Park, Friction stir welding of 5052 aluminum alloy plates, Trans. Nonferrous Metals Soc. China. 19 (2009) 23-27.

DOI: 10.1016/s1003-6326(10)60239-7

Google Scholar

[22] Y. Mao, L. Ke, F. Liu, C. Huang, Y. Chen, Q. Liu, Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum-lithium alloy, Int. J. Adv. Manuf. Technol. 81 (2015) 1419-1431.

DOI: 10.1007/s00170-015-7191-2

Google Scholar

[23] M. Parente, R. Safdarian, A. D. Santos, A. Loureiro, P. Vilaca, R. M. N. Jorge, A study on the formability of aluminum tailor welded blanks produced by friction stir welding, Int. J. Adv. Manuf. Technol. 83 (2016) 2129-2141.

DOI: 10.1007/s00170-015-7950-0

Google Scholar

[24] C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Joining of AISI 1040 steel to 6082-T6 aluminium alloy by friction welding, J. Adv. Mech. Eng. Sci. 1(1) (2015) 57-64.

DOI: 10.18831/james.in/2015011006

Google Scholar

[25] C.H. Muralimohan, V. Muthupandi, Friction welding of type 304 stainless steel to CP titanium using nickel interlayer, Adv. Mater. Res. 794 (2013) 351-357.

DOI: 10.4028/www.scientific.net/amr.794.351

Google Scholar

[26] M. Cheepu, M. Ashfaq, V. Muthupandi, A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel, Trans. Indian. Inst. Met. 70 (2017) 2591-2600.

DOI: 10.1007/s12666-017-1114-x

Google Scholar

[27] M. Cheepu, V. Muthupandi, W.S. Che, Improving mechanical properties of dissimilar material friction welds, Appl. Mech. Mater. 877 (2018) 157-162.

DOI: 10.4028/www.scientific.net/amm.877.157

Google Scholar

[28] C.H. Muralimohan M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metall. Mater. Trans. A. 47 (2016) 347-359.

DOI: 10.1007/s11661-015-3210-z

Google Scholar

[29] M. Cheepu, B. Srinivas, N. Abhishek, T. Ramachandraiah, S. Karna, D. Venkateswarlu, S. Alapati, W.S. Che, Dissimilar joining of stainless steel and 5083 aluminum alloy sheets by gas tungsten arc welding-brazing process, IOP Conf. Ser. Mater. Sci. Eng. 330(1) (2018) 012048.

DOI: 10.1088/1757-899x/330/1/012048

Google Scholar

[30] M. Cheepu, S. Haribabu, T. Ramachandraiah, B. Srinivas, D. Venkateswarulu, S. Karna, S. Alapati, W.S. Che, Fabrication and analysis of accumulative roll bonding process between magnesium and aluminum multi-layers, Appl. Mech. Mater. 877 (2018) 183-189.

DOI: 10.4028/www.scientific.net/amm.877.183

Google Scholar

[31] M. Cheepu, D. Venkateswarlu, M.M. Mahapatra, W.S. Che, Influence of heat treatment conditions of Al-Cu aluminum alloy on mechanical properties of the friction stir welded joints. Korean Welding and Joining Society, 11 (2017) 264-264. http://www.dbpia.co.kr/Journal/ArticleDetail.NODE07278590.

Google Scholar

[32] M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, Development of a friction welded bimetallic joints between titanium and 304 austenitic stainless steel, in: P.M. Pawar, B.P. Ronge, R. Balasubramaniam, S. Seshabhattar (Eds.), Techno-Societal 2016, International Conference on Advanced Technologies for Societal Applications, ICATSA 2016, Springer, Cham, 2018, pp.709-717. DOI: https://doi.org/10.1007/978-3-319-53556-2_73.

DOI: 10.1007/978-3-319-53556-2_73

Google Scholar