[1]
Z.D. Kovalyuk, O.M. Sydor and V.V. Netyaga, Electrical and photoelectrical properties of n-InSe/p-CuInSe2 optical contact, Semiconductor Physics, Quantum electronics and Optoelectronics. 7(4) (2004) 360–362.
DOI: 10.15407/spqeo7.04.360
Google Scholar
[2]
A. Segura, A. Chevy, J.P. Guesdon and J.M. Besson, Photovoltaic effect in InSe - application to solar energy conversion, Revue de Physique Appliquee. 14(1) (1979) 253–257.
DOI: 10.1051/rphysap:01979001401025300
Google Scholar
[3]
M. Parlak, C. Ercelebi, I. Gunal, Z. Salaeva and K. Allakherdiev, Growth and characterization of polycrystalline InSe thin films, Thin solid films. 258 (1995) 86–90.
DOI: 10.1016/0040-6090(94)06398-2
Google Scholar
[4]
S. Gopal, C. Viswanathan, B. Karunajaran, D. Mangalaraj and S.K. Narayandas, Prepa- ration and characterization of electrodeposited Indium Selenide thin films. Cryst. Res. Tecnol. 40 (2005) 557–562.
DOI: 10.1002/crat.200410383
Google Scholar
[5]
N. Benramdane, A. Bousidi, H. Tabet-Derraz, Z. Kebbab and M. Latreche, Optical constants of InSe and In4Se3 thin films in the far infrared region, Microelectronic Engg. 97 (2000) 51–52.
DOI: 10.1016/s0167-9317(99)00528-6
Google Scholar
[6]
H. Atsufumi, S. Jagadeesh and G.P.B. Moodera, Structural and electrical properties of InSe polycrystalline films and diode fabrication, Thin Solid Films. 510 (2006) 247–250.
DOI: 10.1016/j.tsf.2005.12.202
Google Scholar
[7]
G. Micocci and A. Tepore, Electrical properties of vacuum-deposited polycrystalline InSe thin films, Solar Energy Materials. 22 (1991) 215–222.
DOI: 10.1016/0165-1633(91)90019-h
Google Scholar
[8]
H. Bouzouita, N. Bouguila, S. Duchemin, S. Fiechter and A. Dhouib, Preparation and characterization of In2Se3 thin films, Renewable Energy. 25 (2002) 131–138.
DOI: 10.1016/s0960-1481(00)00193-2
Google Scholar
[9]
C. Julien, M. Massot, P. Dzwonkowski, J.Y. Emery and M. Balkanski, Infrared spectroscopy characterization of thin films used in solid state micro-batteries, Infrared Phys. 29 (1989) 769–774.
DOI: 10.1016/0020-0891(89)90123-1
Google Scholar
[10]
M. A. Kenawy, H. A. Zayed and A.M.A. El-Soud, A.c. photoconductivity and optical properties of bulk polycrystalline and amorphous InxSel-x thin films, J. Mater. Sci. - Mater. Electron. 1 (1990) 115–117.
DOI: 10.1007/bf00694919
Google Scholar
[11]
C. Julien, I. Samaras, M. Tsakari, P. Dzwonkowski and M. Balkanski, Lithium insertion in InSe films and applications in micro batteries, Mater. Sci. Eng. B 3 (1989) 25–29.
Google Scholar
[12]
I. Samaras, S. Saikh, C. Julien and M. Balkanski, Lithium insertion in layered materials as battery cathodes, Mater. Sci. Eng. B 3 (1989) 209–214.
DOI: 10.1016/0921-5107(89)90203-1
Google Scholar
[13]
M. Balkanski, C. Julien and J.Y. Emery, Integrable lithium solid-state micro batteries, J. Power Sources. 26 (1989) 615–622.
DOI: 10.1016/0378-7753(89)80189-2
Google Scholar
[14]
S.T. Lakshmikumar and A.S. Rastogi, Selenization of Cu and In thin films for the preparation of Selenide photo-absorber layers in solar cells using se vapor source, Sol. Energy Mater. & Sol. Cells. 32 (1994) 7–19.
DOI: 10.1016/0927-0248(94)90251-8
Google Scholar
[15]
D. Belotsky, P. Babyuk, N. Demyanchuk, N.P. Noval'kovskii and R.F. Boichuk, Physicochemical study of the In2B3vi- A2vB3vi systems, in low-temperature thermoelectric materials (in Russian), Shtiintsa", Kishinev. Shtiintsa,, Kishinev. (1970) 29–35.
Google Scholar
[16]
M. Wobst, The quasibinary sections Sb2Te3-In2Te3, Bi2Te3-In2Te3 and Sb2Se3-In2Se3, Z. Metallkd. 58(7) (1967) 481–483.
Google Scholar
[17]
T. Guliev, E.V. Magerramov and P.G. Rustamov, The system In2Se3-Sb2S3, Inorg. Mater (Engl. Trans.). 13(4) (1977) 514–516.
Google Scholar
[18]
K. K. Patel. Optical absorption study of SnSe thin films". Ph. d. thesis. "Studies on well characterized thermally evaporated SnSe thin films for Schottky barrier device application, S.P. University, India (2012).
DOI: 10.1515/9783112501481-048
Google Scholar
[19]
M. Fadel, S.A. Fayek, M.O. Abou-Helal, M.M. Ibrahim and A.M. Shakra, Structural and optical properties of SeGe and SeGex (x = In, Sb, and Bi) amorphous film, Journal of Alloys and Compounds. 485 (2009) 604–609.
DOI: 10.1016/j.jallcom.2009.06.057
Google Scholar
[20]
E. Marquez, A.M. Bernal-Oliva and J.M.G.L. et al, Optical-constant calculation of non- uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band- gap region (0.1-1.8 eV), Mater. Chem. Phys. 60 (1999) 231–239.
DOI: 10.1016/s0254-0584(99)00078-4
Google Scholar
[21]
D.A. Dholakia, G.K. Solanki, S.G. Patel and M.K. Agarwal, Optical band gap studies of tungsten sulphoselenied single crystals grown by a DVT technique, Scientia Iranica. 10(4) (2003) 373–382.
Google Scholar
[22]
M.M. El-Nahass, A.B.A. Saleh, A.A.A. Darwish and M.H. Bahlol, Optical properties of nanostructured InSe thin films, Optics Communications. 285 (2012) 1221–1224.
DOI: 10.1016/j.optcom.2011.11.031
Google Scholar
[23]
J. Sharma, G. Singh and A.T. et al, Preparation and characterization of SnSe Nano crystalline thin films, Journal of Optoelectronics and Advanced Materials. 7(4) (2005) 2085–(2096).
Google Scholar
[24]
R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Sci. Instrum. 16 (1983) 1214–1222.
DOI: 10.1088/0022-3735/16/12/023
Google Scholar
[25]
J. C. Manifacier, J. Gasiot and J.P. Fillard, A simple method for the determination of the optical constants η, k and the thickness of a weakly absorbing thin film, J. Phys. E: Sci. Instrum. 9 (1976) 1002–1004.
DOI: 10.1088/0022-3735/9/11/032
Google Scholar