Effect of Calcium Phosphate on Tensile and Rheological Properties of Polylactic Acid (PLA)

Article Preview

Abstract:

From the last few decades, biodegradable composites have become best alternatives over the petro based polymer because these degrade in the simple compound in the natural environments. Among the available biodegradable polymers, polylactic acid (PLA) is more popular due to its biocompatibility and mechanical properties, that can be used in the biomedical application, such as sutures, bone and ligament fixation screws etc. In this study, synthesis of PLA was performed by ring opening polymerization and Calcium phosphate/Polylactic acid (PLA) bio-composites were prepared by melt mixing technique. Tensile properties of these composites are investigated to assess its feasibility in biomedical and food packaging application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

404-408

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bouzouita , D. Notta-Cuvier, R. Delille, F. Lauro, J.-M. Raquez, P. Dubois, Design of toughened PLA based material for application in structuressubjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature,, Polymer Testing 57, 2017, pp.235-244.

DOI: 10.1016/j.polymertesting.2016.11.034

Google Scholar

[2] K. M. Nampoothiri, N. R. Nair, R. P. John, An overview of the recent developments in polylactide (PLA) research,, Bioresource Technology 101, 2010, p.8493–8501.

DOI: 10.1016/j.biortech.2010.05.092

Google Scholar

[3] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials,, Macromol. Biosci. 4, 2004, p.835–864.

DOI: 10.1002/mabi.200400043

Google Scholar

[4] M.S. Lopes, A.L. Jardini, R.M. Filho, Poly (lactic acid) production for tissue engineering Applications,, Procedia Eng. 42, 2012, pp.1402-1413.

DOI: 10.1016/j.proeng.2012.07.534

Google Scholar

[5] X. Li, C. Guo, X. Liu, L. Liu, J. Bai, F. Xue, P. Lin, C. Chu, Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires,, Progress in Natural Science: Materials International 24, 2014, p.472–478.

DOI: 10.1016/j.pnsc.2014.08.003

Google Scholar

[6] B. Bax, J. Mussig, Impact and tensile properties of PLA/Cordenka and PLA/flax composites,, Compos. Sci. Technol. 68, 2008, p.1601–1607.

DOI: 10.1016/j.compscitech.2008.01.004

Google Scholar

[7] Y. Lemmouchi, M. Murariu, A.M.D. Santos, A.J. Amass, E. Schacht, P. Dubois, Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly (D, L-lactide)-b-poly (ethylene glycol) copolymers,, Eur. Polym. J. 45, 2009 p.2839–2848.

DOI: 10.1016/j.eurpolymj.2009.07.006

Google Scholar

[8] C. Aversa, M. Barletta, E. Pizzi, M. Puopolo, S. Vesco, Wear resistance of injection moulded PLA-talc engineered bio-composites: Effect of material design, thermal history and shear stresses during melt processing,, Wear 390–391, 2017, 184–197.

DOI: 10.1016/j.wear.2017.08.001

Google Scholar

[9] Chin-San Wu, Hsin-Tzu Liao, Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites,, Polymer 48, 2007, pp.4449-4458.

DOI: 10.1016/j.polymer.2007.06.004

Google Scholar

[10] D. Lahiri, F. Rouzaud, T. Richard, A. K. Keshri, S. R. Bakshi, L. Kos, A. Agarwal, Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro, Acta Biomaterialia 6 (2010) 3524–3533.

DOI: 10.1016/j.actbio.2010.02.044

Google Scholar

[11] M. p. Ho, K. t. Lau, H. Wang, D. Hui, Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles,, Composites Part B 81, 2015, pp.14-25.

DOI: 10.1016/j.compositesb.2015.05.048

Google Scholar

[12] M. Murariu, A. D. S. Ferreira, P. Degee, M. Alexandre, P. Dubois, Polylactide compositions. Part 1: Effect of filler content and size on mechanical properties of PLA/calcium sulfate composites,, Polymer 48, 2007, pp.2613-2618.

DOI: 10.1016/j.polymer.2007.02.067

Google Scholar

[13] K. Piekarska, E. Piorkowska, J. Bojda, The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites,, Polymer Testing 62, 2017, pp.203-209.

DOI: 10.1016/j.polymertesting.2017.06.025

Google Scholar

[14] M. Ramos, E. Fortunati, M. Peltzer, A. Jimenez, J. M. Kenny, M. C. Garrigos, Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles,, Polymer Degradation and Stability 132, 2016, pp.2-10.

DOI: 10.1016/j.polymdegradstab.2016.05.015

Google Scholar

[15] J. O. Akindoyo, M. D. H. Beg, S. Ghazali , H. P. Heim, M. Feldmann, Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites,, Composites: Part A 103, 2017, p.96–105.

DOI: 10.1016/j.compositesa.2017.09.013

Google Scholar

[16] G. Sahu, M. S. Rajput, U. N. Sahu, S. P. Mahapatra, Production (Synthesis) and Rheological Properties of Poly Lactic Acid (PLA) for Food Packaging and Biomedical Application,, Proceedings of the 10th International Conference On Precision, Meso, Micro and Nano Engineering, pp.532-534.

Google Scholar

[17] S. Girdthep, W. Sankong, A. Pongmalee, T. Saelee, W. Punyodom, P. Meepowpan, P. Worajittiphon, Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(l-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets,, Polymer Testing, Volume 61, 2017, pp.229-239.

DOI: 10.1016/j.polymertesting.2017.05.009

Google Scholar