Investigation on Electromechanical Properties of Solid Silicone Rubber Composites with Conductive Carbon Filler

Article Preview

Abstract:

Dielectric elastomers belonging to the class of electroactive polymers are promising materials for electromechanical transduction. They are used as actuators, capacitive sensors and energy harvesters. In the present study solid silicone rubber-super conducting carbon black composites are prepared through compression moulding process and evaluated for their mechanical and dielectric properties. Electromechanical sensitivity is estimated and discussed using Taguchi orthogonal arrays for the factors, such as content of active filler and curing agent, mixing time in roll mill, curing temperature. Permittivity of the composites increased 6 times when compared with the sample without active filler. Electromechanical sensitivity of the composite improved 2 times, thus highlighting that this approach could lead to development of newer dielectric elastomer transducer materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

409-414

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Carpi, G. Gallone, F. Galantini, D. De Rossi, Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties, Adv. Funct. Mater. 18 (2008) 235–241.

DOI: 10.1002/adfm.200700757

Google Scholar

[2] R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators, Mater. Sci. Eng. C. 11 (2000) 89–100.

DOI: 10.1016/s0928-4931(00)00128-4

Google Scholar

[3] P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 31 (2010) 10–36.

DOI: 10.1002/marc.200900425

Google Scholar

[4] A. Bele, M. Cazacu, G. Stiubianu, S. Vlad, Silicone-barium titanate composites with increased electromechanical sensitivity. the effects of the filler morphology, RSC Adv. 4 (2014) 58522–58529.

DOI: 10.1039/c4ra09903f

Google Scholar

[5] G. Gallone, F. Galantini, F. Carpi, Perspectives for new dielectric elastomers with improved electromechanical actuation performance: Composites versus blends, Polym. Int. 59 (2010) 400–406.

DOI: 10.1002/pi.2765

Google Scholar

[6] L. Zhang, P. Bass, Z.-M. Dang, Z.-Y. Cheng, Characterization of percolation behavior in conductor–dielectric 0-3 composites, J. Adv. Dielectr. 04 (2014) 1450035.

DOI: 10.1142/s2010135x14500350

Google Scholar

[7] L. Zhang, P. Bass, Z.-Y. Cheng, Physical aspects of 0-3 dielectric composites, J. Adv. Dielectr. 05 (2015) 1550012.

Google Scholar

[8] L.J. Romasanta, M.A. Lopez-Manchado, R. Verdejo, Increasing the performance of dielectric elastomer actuators: A review from the materials perspective, Prog. Polym. Sci. 51 (2015) 188–211.

DOI: 10.1016/j.progpolymsci.2015.08.002

Google Scholar

[9] L. Zhang, P. Bass, Z.Y. Cheng, Revisiting the percolation phenomena in dielectric composites with conducting fillers, Appl. Phys. Lett. 105 (2014) 042905.

DOI: 10.1063/1.4892000

Google Scholar

[10] B. Hilczer, J. Kułek, E. Markiewicz, M. Kosec, B. Malič, Dielectric relaxation in ferroelectric PZT-PVDF nanocomposites, J. Non. Cryst. Solids. 305 (2002) 167–173.

DOI: 10.1016/s0022-3093(02)01103-1

Google Scholar

[11] F.B. Madsen, A.E. Daugaard, S. Hvilsted, A.L. Skov, The Current State of Silicone-Based Dielectric Elastomer Transducers, Macromol. Rapid Commun. 37 (2016) 378–413.

DOI: 10.1002/marc.201500576

Google Scholar

[12] N.M. Renukappa, Siddaramaiah, R.D. Sudhaker Samuel, J. Sundara Rajan, J.H. Lee, Dielectric properties of carbon black: SBR composites, J. Mater. Sci. Mater. Electron. 20 (2009) 648–656.

DOI: 10.1007/s10854-008-9780-4

Google Scholar

[13] P. Ghosh, A. Chakrabarti, Conducting carbon black filled EVA vulcanizates: Assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading, J. Polym. Mater. 17 (2000) 291–304.

DOI: 10.1016/s0014-3057(99)00157-3

Google Scholar

[14] Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites, Prog. Mater. Sci. 57 (2012) 660–723.

DOI: 10.1016/j.pmatsci.2011.08.001

Google Scholar

[15] L. ZHANG, Z.-Y. CHENG, Development of Polymer-Based 0–3 Composites With High Dielectric Constant, J. Adv. Dielectr. 01 (2011) 389–406.

DOI: 10.1142/s2010135x11000574

Google Scholar

[16] Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Dielectric behavior of a metal-polymer composite with low percolation threshold, Appl. Phys. Lett. 89 (2006) 072902.

DOI: 10.1063/1.2337157

Google Scholar

[17] C. Brosseau, F. Boulic, P. Queffelec, C. Bourbigot, Y. Le Mest, J. Loaec, Dielectric and microstructure properties of polymer carbon black composites, J. Appl. Phys. 81 (1997) 882–891.

DOI: 10.1063/1.364173

Google Scholar

[18] B.P. Sahoo, K. Naskar, D.K. Tripathy, Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: Physico-mechanical, thermal, and electrical properties, J. Mater. Sci. 47 (2012) 2421–2433.

DOI: 10.1007/s10853-011-6065-8

Google Scholar

[19] H.H. Hassan, G.M. Nasr, M.A. El-Waily, Electrical and mechanical properties of aluminum-loaded NBR composites, J. Elastomers Plast. 45 (2013) 121–141.

DOI: 10.1177/0095244312462160

Google Scholar

[20] J. Saji, A. Khare, S.P. Mahapatra, Relaxation behavior of nanographite-reinforced silicon elastomer nanocomposites, High Perform. Polym. 28 (2016) 3–13.

DOI: 10.1177/0954008314568729

Google Scholar

[21] D. Khastgir, Electric , Dielectric , and Dynamic Mechanical Behavior of Carbon Black / Styrene – Butadiene – Styrene Composites, J. Polym. Sci. Part B Polym. Phys. 41 (2003) 2983–2997.

DOI: 10.1002/polb.10627

Google Scholar

[22] H. Zhao, D.R. Wang, J.W. Zha, J. Zhao, Z.M. Dang, Increased electroaction through a molecular flexibility tuning process in TiO2-polydimethylsilicone nanocomposites, J. Mater. Chem. A. 1 (2013) 3140–3145.

DOI: 10.1039/c2ta01026g

Google Scholar