[1]
Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V., (2000). Bulk nanostructured materials from severe plastic deformation. Materials Science. 45, 103-109.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[2]
Huang, Y., Prangnell, P.B., (2007). Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet. Scripta Material. 56, 333-336.
DOI: 10.1016/j.scriptamat.2006.11.011
Google Scholar
[3]
Alipour, M., Aghdam, B.G., Ebrahimi Rahnoma, H., Emamya, M., (2013). Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behaviour of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process. Materials and Design. 46, 766-775.
DOI: 10.1016/j.matdes.2012.10.058
Google Scholar
[4]
Abolhasani, A., Zarei-Hanzaki, A., Abedi, H.R., Rokni, M.R., (2012). The room temperature mechanical properties of hot rolled 7075 alloy. Materials and Design. 34, 631-636.
DOI: 10.1016/j.matdes.2011.05.019
Google Scholar
[5]
Lang, Y., Hua, C., Cai, Y. Zhang, J., (2012). Effect of strain modified particles on the formation of fined grains and the properties of AA7050 alloy. Materials and Design. 39, 220-225.
DOI: 10.1016/j.matdes.2012.02.005
Google Scholar
[6]
Ramesh Kumar, S., Kondaiah, G., Venkatachalam, P., Ravisankar, B., (2010). Stress corrosion cracking of Al7075 alloy processed by equal channel angular pressing. International Journal of Engineering Science and Technology. 12, 53-61.
Google Scholar
[7]
Wang, Y., Chen, M., Zhou, F., Ma, E.,(2002). High tensile ductility in a nanostructured metal. Nature. 419, 912-915.
DOI: 10.1038/nature01133
Google Scholar
[8]
Rangaraju, N., Raghuram, T., Krishna, B.V., Rao, K.P., Venugopal, P., (2005). Effect of cryorolling and annealing on microstructure and properties of commercially pure aluminum. Materials Science & Engineering A, 398, 246-251.
DOI: 10.1016/j.msea.2005.03.026
Google Scholar
[9]
Lee, T.R, Chang, C.P., Kao, P.W., (2005). The tensile behaviour and deformation microstructure of cryorolled and annealed pure nickel. Materials Science & Engineering A. 408, 131-135.
DOI: 10.1016/j.msea.2005.07.045
Google Scholar
[10]
Lee, Y.B, Shin, D.H., Park, K.T., Nam, W.J., (2004). Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Scripta Material. 51, 355-359.
DOI: 10.1016/j.scriptamat.2004.02.037
Google Scholar
[11]
Nageswara rao, P., Jayaganthan, R., (2012). Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Materials and Design. 39, 226-233.
DOI: 10.1016/j.matdes.2012.02.010
Google Scholar
[12]
Sanmugamsundram, T., Murthy, B.S., Subramanya sarma, V., (2006). Development of ultrafhine grained high strength Al-Cu alloy by cryorolling. Scripta Materialia. 54, 2013-2017.
DOI: 10.1016/j.scriptamat.2006.03.012
Google Scholar
[13]
Panigrahi, S., Jayaganthan, R., (2011). Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy. Journal of Alloys and Compounds. 509, 9609-9616.
DOI: 10.1016/j.jallcom.2011.07.028
Google Scholar
[14]
Jayaganthan, R., Brokmeier, H.G., Bernd, S., Panigrahi, S.K., (2010). Microstructure and texture evolution in cryorolled Al 7075 alloy. Journal of Alloys and Compounds. 496, 183-188.
DOI: 10.1016/j.jallcom.2010.02.111
Google Scholar
[15]
Panigrahi, S., Jayaganthan, R., (2011). Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Materials and Design. 32, 3150-3160.
DOI: 10.1016/j.matdes.2011.02.051
Google Scholar
[16]
Das, P., Jayaganthan, R., Singh, I.V., (2011). Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy. Materials and Design. 32, 1298-1305.
DOI: 10.1016/j.matdes.2010.09.026
Google Scholar
[17]
Wua Y.L, U.F.H. Froesa, A.Alaverza, C.G. Lib and J.Liuc (1997). Microstructure of properties of a new super-high strength Al-Zn-Mg-Cu alloy-C912. Materials & Design, 18(46): 211-215.
DOI: 10.1016/s0261-3069(97)00084-8
Google Scholar