Thermo-Mechanical Treated High Strength AA-7xxx Aluminium Alloy by Cold and Cryo-Rolling Study their Mechanical Properties Corrosion and Microstructure Correlation

Article Preview

Abstract:

Thermo-mechanical treatment, in particular, cryo-rolling is a unique technique to produce super high strength AA-7xxx aluminium alloys with ultra-fine grained structure. In order to conduct the rolling at room temperature and cryo-temperature (liquid N2 (-190°C)), the AA-7xxx alloy ingot was rolled from 6mm to 1mm with 85% reduction in thickness. Optical microscopy, XRD, electron microscopy, hardness and tensile testing were conducted on the rolled alloy for understanding the phase changes and evaluating the mechanical properties. The alloy rolled at liquid nitrogen (LN2) exhibits very high strength with reasonable ductility. Corrosion behaviour of AA-7xxx series aluminium alloy various conditions in NaCl (3.5%) solution were investigated. Cold rolled and cryo rolled alloy exhibits better corrosion resistance than that of cast.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V., (2000). Bulk nanostructured materials from severe plastic deformation. Materials Science. 45, 103-109.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] Huang, Y., Prangnell, P.B., (2007). Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet. Scripta Material. 56, 333-336.

DOI: 10.1016/j.scriptamat.2006.11.011

Google Scholar

[3] Alipour, M., Aghdam, B.G., Ebrahimi Rahnoma, H., Emamya, M., (2013). Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behaviour of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process. Materials and Design. 46, 766-775.

DOI: 10.1016/j.matdes.2012.10.058

Google Scholar

[4] Abolhasani, A., Zarei-Hanzaki, A., Abedi, H.R., Rokni, M.R., (2012). The room temperature mechanical properties of hot rolled 7075 alloy. Materials and Design. 34, 631-636.

DOI: 10.1016/j.matdes.2011.05.019

Google Scholar

[5] Lang, Y., Hua, C., Cai, Y. Zhang, J., (2012). Effect of strain modified particles on the formation of fined grains and the properties of AA7050 alloy. Materials and Design. 39, 220-225.

DOI: 10.1016/j.matdes.2012.02.005

Google Scholar

[6] Ramesh Kumar, S., Kondaiah, G., Venkatachalam, P., Ravisankar, B., (2010). Stress corrosion cracking of Al7075 alloy processed by equal channel angular pressing. International Journal of Engineering Science and Technology. 12, 53-61.

Google Scholar

[7] Wang, Y., Chen, M., Zhou, F., Ma, E.,(2002). High tensile ductility in a nanostructured metal. Nature. 419, 912-915.

DOI: 10.1038/nature01133

Google Scholar

[8] Rangaraju, N., Raghuram, T., Krishna, B.V., Rao, K.P., Venugopal, P., (2005). Effect of cryorolling and annealing on microstructure and properties of commercially pure aluminum. Materials Science & Engineering A, 398, 246-251.

DOI: 10.1016/j.msea.2005.03.026

Google Scholar

[9] Lee, T.R, Chang, C.P., Kao, P.W., (2005). The tensile behaviour and deformation microstructure of cryorolled and annealed pure nickel. Materials Science & Engineering A. 408, 131-135.

DOI: 10.1016/j.msea.2005.07.045

Google Scholar

[10] Lee, Y.B, Shin, D.H., Park, K.T., Nam, W.J., (2004). Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Scripta Material. 51, 355-359.

DOI: 10.1016/j.scriptamat.2004.02.037

Google Scholar

[11] Nageswara rao, P., Jayaganthan, R., (2012). Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Materials and Design. 39, 226-233.

DOI: 10.1016/j.matdes.2012.02.010

Google Scholar

[12] Sanmugamsundram, T., Murthy, B.S., Subramanya sarma, V., (2006). Development of ultrafhine grained high strength Al-Cu alloy by cryorolling. Scripta Materialia. 54, 2013-2017.

DOI: 10.1016/j.scriptamat.2006.03.012

Google Scholar

[13] Panigrahi, S., Jayaganthan, R., (2011). Effect of ageing on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy. Journal of Alloys and Compounds. 509, 9609-9616.

DOI: 10.1016/j.jallcom.2011.07.028

Google Scholar

[14] Jayaganthan, R., Brokmeier, H.G., Bernd, S., Panigrahi, S.K., (2010). Microstructure and texture evolution in cryorolled Al 7075 alloy. Journal of Alloys and Compounds. 496, 183-188.

DOI: 10.1016/j.jallcom.2010.02.111

Google Scholar

[15] Panigrahi, S., Jayaganthan, R., (2011). Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Materials and Design. 32, 3150-3160.

DOI: 10.1016/j.matdes.2011.02.051

Google Scholar

[16] Das, P., Jayaganthan, R., Singh, I.V., (2011). Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy. Materials and Design. 32, 1298-1305.

DOI: 10.1016/j.matdes.2010.09.026

Google Scholar

[17] Wua Y.L, U.F.H. Froesa, A.Alaverza, C.G. Lib and J.Liuc (1997). Microstructure of properties of a new super-high strength Al-Zn-Mg-Cu alloy-C912. Materials & Design, 18(46): 211-215.

DOI: 10.1016/s0261-3069(97)00084-8

Google Scholar