Optimization of Cutting Conditions for Surface Roughness in VMC 5-Axis

Article Preview

Abstract:

Vertical machining center (VMC) five-axis is advanced metal cutting process which used tomachine advanced materials for creating parts for industries like die, automotive, aerospace, machinerydesign, etc. Input parameters selection very important in VMC-five axis to obtain better surface finishon milled part and enhanced machining economics. In the present work, experimental analysis has beenplanned to study the significances of milling parameters on quality response, surface roughness (Ra) ofD3 steel. The experiments have been planned on D3 steel in VMC five axis as per Box-Behnken designof response surface methodology (RSM). Modeling and optimization have been done by hybrid RSMand Jaya optimization algorithm. The factor effects on Ra has been studied by analysis of signal-tonoise ratio. The concluding remarks has been drawn from the study

You might also be interested in these eBooks

Info:

Periodical:

Pages:

631-636

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kundrák, A. P. Markopoulos, T. Makkai, N. E. Karkalos, A. Nagy, Multi-objective optimization study in face milling of steel. Proceed. of the Int. Sympos. for Prod. Resea. (2019) 3–15.

DOI: 10.1007/978-3-319-92267-6_1

Google Scholar

[2] Lamikiz, L. N. L. de Lacalle, O. Ocerin, D. Díez, E. Maidagan, The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. Int J Adv Manuf Technol 37 (2008) 122–139.

DOI: 10.1007/s00170-007-0956-5

Google Scholar

[3] D. P. Selvaraj, P. Chandramohan, P. Chandrasekar, Experimental investigations of nitrogen alloyed duplex stainless steel in dry milling process. J. of Engi. Sci. and Technol. 13 (2018) 321 – 331.

Google Scholar

[4] T. Ozel, T. K. Hsu, E. Zeren, Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 25 (2005) 262–269.

DOI: 10.1007/s00170-003-1878-5

Google Scholar

[5] P. V. Vinay, CH. S. Rao, Experimental analysis and modelling of grinding AISI D3 steel. Int. J. of Recent Adv. in Mecha. Engi. 4 (2015) 47-60.

DOI: 10.14810/ijmech.2015.4105

Google Scholar

[6] R. Rudrapati, A. Bandyopadhyay, P. K. Pal. Investigation on surface roughness in cylindrical grinding. American Institute of Physics Conf. Proceed. 1315 (2011) 1359-1364.

Google Scholar

[7] Md. A. P. Ullah, A. K. M. N. Amin, M. D. Arif, Optimization of surface roughness in end milling of medium carbon steel by coupled statistical approach with genetic algorithm. The First Int. Conf. on Interdisci. Resea. and Develop. (2011) Thailand.

Google Scholar

[8] R. V. Rao. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. of Industr. Engi. Comput. 7 (2016) 19–34.

DOI: 10.5267/j.ijiec.2015.8.004

Google Scholar

[9] J. X. Ren, C. F. Yao, D. H. Zhang, Y. L. Xue, Y. S. Liang, Research on tool path planning method of four-axis high-efficiency slot plunge milling for open blisk. Int. J. Adv. Manuf. Technol. 45 (2009) 101–109.

DOI: 10.1007/s00170-009-2153-1

Google Scholar

[10] X. FuGui, L. XinJun, Z. Hui, W. JinSong. Design and experimental study of the SPKM165, a five-axis serial-parallel kinematic milling machine. Sci. China Technol. Sci. 54 (2011) 1193–1205.

DOI: 10.1007/s11431-011-4314-3

Google Scholar

[11] C. Zhang, H. Zhang, Y. Li, L. Zhou, Modeling and on-line simulation of surface topography considering tool wear in multi-axis milling process. Int. J. Adv. Manuf. Technol. 77 (2015) 735-749.

DOI: 10.1007/s00170-014-6485-0

Google Scholar

[12] T.V. Do, N. A. Vu Le. Optimization of surface roughness and cutting force in MQL hard-milling of AISI H13 steel. LNNS 63 (2019) 448–454.

DOI: 10.1007/978-3-030-04792-4_58

Google Scholar

[13] R. Rudrapati, P. Sahoo, A. Bandyopadhyay. Parametric optimization in CNC turning of aluminum alloy using hybrid RSM cum TLBO approach. IOP Conf. Series Mate. Sci. and Engg. 149 (2016) 1-13.

DOI: 10.1088/1757-899x/149/1/012039

Google Scholar

[14] I. P. Okokpujie, O. O. Ajayi, S. A. Afolalu, A. A. Abioye, E.Y. Salawu, M. O. Udo, U. C. Okonkwo, K. B. Orodu, O. M. Ikumapayi, Modeling and optimization of surface roughness in end milling of aluminium using least square approximation method and response surface methodology, Int. J. of Mecha. Engi. and Technol. 9 2018 587–600.

Google Scholar

[15] R.V. Rao, D.P. Rai, J. Balic, Surface grinding process optimization using Jaya algorithm. Comput. Intellig. in Data Mining 2 (2016) 487-495.

DOI: 10.1007/978-81-322-2731-1_46

Google Scholar

[16] K. Abhishek, V. R. Kumar, S. Datta, S. S. Mahapatra. Application of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICA. Engi. with Comp. 33 (2017) 457–475.

DOI: 10.1007/s00366-016-0484-8

Google Scholar

[17] R. V. Rao, D.P. Rai, J. Balic, A new optimization algorithm for parameter optimization of nano-finishing processes. Scientia Iranica E 24 (2017) 868-875.

DOI: 10.24200/sci.2017.4068

Google Scholar

[18] M. Das, R. Rudrapati, N. Ghosh, L. Rathod, Input Parameters optimization in EDM Process using RSM and JAYA Algorithm. Int. J. of Current Engi. and Technol. (2016) 109-112.

Google Scholar

[19] R. Rudrapati, P. k. Pal, A. Bandyopadhyay, Modeling of surface roughness in cylindrical grinding. Int. J. of Machi. and Machi. of Mate. 12 (2012) 28-36.

Google Scholar