[1]
J. S. Soni, G. Chakraverti, Performance evaluation of rotary EDM by experimental design technique, Def. Sci. J. 47 (1) (1997) 65-73.
DOI: 10.14429/dsj.47.3978
Google Scholar
[2]
C. C. Wang, B. H. Yan, Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining, J. Mater. Process. Technol. 102 (2000) 90-102.
DOI: 10.1016/s0924-0136(99)00423-9
Google Scholar
[3]
S. Singh, S. Maheshwari, P. C. Pandey, Some investigations into the electric discharge machining of hardened tool steel using different electrode materials J. Mater. Process. Technol. 149 (2004) 272-277.
DOI: 10.1016/j.jmatprotec.2003.11.046
Google Scholar
[4]
M. Risto, R. Haas, M. Munz, Optimization of the EDM drilling process to increase the productivity and geometrical accuracy, Procedia CIRP 42 (2016) 537-542.
DOI: 10.1016/j.procir.2016.02.247
Google Scholar
[5]
A. Thakur, S. Gangopadhyay, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tool. Manu. 100 (2016) 25-54.
DOI: 10.1016/j.ijmachtools.2015.10.001
Google Scholar
[6]
A. Pandey, R. Kumar, Some studies using cryogenically treated rotary Cu tool electrode Electrical Discharge machining, Mater. Today Proc. 5 (2018) 7635-7639.
DOI: 10.1016/j.matpr.2017.11.438
Google Scholar
[7]
P. Kuppan, A. Rajadurai, S. Narayanan, Influence of EDM process parameters in deep hole drilling of Inconel 718, Int. J. Adv. Manuf. Technol. 38 (1-2) (2008) 74-84.
DOI: 10.1007/s00170-007-1084-y
Google Scholar
[8]
S. Kumar, A. Batish, R. Singh, A. Bhattacharya, Effect of cryogenically treated copper-tungsten electrode on tool wear rate during electro-discharge machining of Ti-5Al-2.5Sn alloy, Wear 386-387 (2017) 223-229.
DOI: 10.1016/j.wear.2017.01.067
Google Scholar
[9]
P. Kuppan, S. Narayanan, R. Oyyaravelu, A. S. S. Balan, Performance Evaluation of Electrode Materials in Electric Discharge Deep Hole Drilling of Inconel 718 Super alloy, Procedia Eng. 174 (2017) 53-59.
DOI: 10.1016/j.proeng.2017.01.141
Google Scholar
[10]
S. Plaza, J. A. Sanchez, E. Perez, R. Gila, B. Izquierdo, N. Ortegaa, I. Pombo, Experimental study on micro EDM drilling of Ti6Al4V using helical electrode, Precis. Eng. 38 (2014) 821-827.
DOI: 10.1016/j.precisioneng.2014.04.010
Google Scholar
[11]
A. Singh, P. Kumar, I. Singh, Process Optimization for Electro-Discharge Drilling of Metal Matrix Composites, Procedia Eng. 64 (2013) 1157-1165.
DOI: 10.1016/j.proeng.2013.09.194
Google Scholar
[12]
J. Kumar, H. Ahmad, Parametric Analysis of Rotary Tool Electrical Discharge Machining of Metal Matrix Composite, Int. J. Eng. Res. Technol. 3 (9) (2014) 1225-1229.
Google Scholar
[13]
S. Gaur, P. K. Bharti, Experimental Study with Rotating Tool Electrode of EDM for Ni Alloy, Int. J. Mod. Eng. Res. 5 (2015) 15-22.
Google Scholar
[14]
V. Srivastava, P. M. Pandey, Effect of process parameters on the performance of EDM process with ultrasonic assisted cryogenically cooled electrode, J. Manuf. Process. 14 (2012) 393–402.
DOI: 10.1016/j.jmapro.2012.05.001
Google Scholar
[15]
R. Chopra, J. S. Tiwana, N. Grover, To Study the Effect of Cryogenic Treatment on Single Point Cutting Tool Materials for Fine Turning, Int. J. Rec. Trends Eng. Res. 2 (4) (2016) 231-240.
Google Scholar
[16]
N. R. Ram, K. V. Rao, C. L. Kanth, M. N. S. Sri, Parametric Analysis on the Effect of Cryogenic Treatment on the Work Piece Material of EDM Process, Int. J. Eng. Res. Technol. 3 (1) (2014), 1087-1094.
Google Scholar
[17]
S. Kumar, A. Batish, R. Singh, A. Bhattacharya, Effect of cryogenically treated copper-tungsten electrode on tool wear rate during electro-discharge machining of Ti-5Al-2.5Sn alloy, Wear. 386-387 (2017), 223–229.
DOI: 10.1016/j.wear.2017.01.067
Google Scholar
[18]
V. Gaikwad, V. S. Jatti, T. P. Singh, Electric discharge machining of cryo-treated NiTi alloy by cryo-treated and untreated copper electrode, J. Chem. Pharm. Res. 7 (7) (2015), 210-215.
DOI: 10.4028/www.scientific.net/amm.787.366
Google Scholar
[19]
C. M. Rao, K. Venkatasubbaiah, Effect and Optimization of EDM Process Parameters on Surface Roughness for En41 Steel, Int. J. Hybrid Inf. Technol. 9 (5) (2016) 343-358.
DOI: 10.14257/ijhit.2016.9.5.29
Google Scholar