Fabrication of Light Weight Metal Matrix Nanocomposites Using Ultrasonic Cavitation Process: A State of Review

Article Preview

Abstract:

Fabrication of nanocomposites is a highly challenging task because of the particles need to be disseminated across the molten liquid due to broad surface area, poor wettability. Homogeneous dispersion is tough in traditional stirring methods leads to cluster and agglomeration formation in high viscous molten metals. In such attempts, the ultrasonic vibration process exhibits the better dispersion and distribution of nanocomposites with enhanced material properties as compared to other fabrication processes. This paper deals with the fabrication process, probe design and effective process parameters of sonication process to the uniform dispersion of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

882-888

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yong Yang, Jie Lan, Xiaochun Li, Study on bulk aluminum matrix nanocomposite fabricated by ultrasonic dispersion of nano-sized SiC particles in the molten aluminum alloy, Materials Science and Engineering A 380 (2004) 378–383.

DOI: 10.1016/j.msea.2004.03.073

Google Scholar

[2] X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu ,K.Wu, Y.Q. Wang, Y.D. Huang, Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing, materials and design 57 (2014) 638-645.

DOI: 10.1016/j.matdes.2014.01.022

Google Scholar

[3] R.Harichandran, N.Selvakumar, Effect of nano/micro B4C particles on the mechanical properties of aluminum metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process, Archives of civil and mechanical engineering (2015).

DOI: 10.1016/j.acme.2015.07.001

Google Scholar

[4] Dinesh Kumar Kolia, Geeta Agnihotri, Rajesh Purohit, Influence of Ultrasonic Assisted Stir Casting on Mechanical Properties of Al6061-nano Al2O3 Composites, Materials Today: Proceedings 2 ( 2015 ) 3017 – 3026.

DOI: 10.1016/j.matpr.2015.07.286

Google Scholar

[5] Jufu Jiang, Ying Wang, Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring, materials science and engineering A 639 (2015) 350-358.

DOI: 10.1016/j.msea.2015.04.064

Google Scholar

[6] Ravindra Singh Rana, Rajesh Purohit, Anil kumar Sharma, Saraswati Rana, Optimization of Wear Performance of Aa 5083/10 Wt. % SiC nano Composites Using Taguchi Method, Procedia Materials Science 6 ( 2014 ) 503 – 511.

DOI: 10.1016/j.mspro.2014.07.064

Google Scholar

[7] A.Baradeswaran, A.Elayaperumal, R. Franklin Issac, A Statistical Analysis of Optimization of Wear Behaviour of Al-Al2O3Composites Using Taguchi Technique, Procedia Engineering 64 ( 2013 ) 973 – 982.

DOI: 10.1016/j.proeng.2013.09.174

Google Scholar

[8] Lan J., Yang Y., Li X., Microstructure and Microhardness of SiC Nanoparticles Reinforced Magnesium Composites Fabricated by Ultrasonic Method, Materials Science and Engineering A, vol. 386, (2004) pp.284-290.

DOI: 10.1016/s0921-5093(04)00936-0

Google Scholar

[9] Li X., Duan Z., Cao G., Roure A.Ultrasonic Cavitation Based Solidification Processing of Bulk Mg Matrix Nanocomposite,, AFS Transactions, paper #07- 135, (2007).

Google Scholar

[10] Yang Y., Li X., Ultrasonic Cavitation-Based Nano-manufacturing of Bulk Aluminum Matrix Nano-composites, ASME Journal of Manufacturing Science and Engineering, vol. 129, pp.252-255, (2007).

DOI: 10.1115/1.2194064

Google Scholar

[11] G. Cao, H. Konishi and X. Li, Recent Developments on Ultrasonic Cavitation Based Solidification Processing of Bulk Magnesium Nano-composites, International Journal of Metalcasting/Winter 08, (2008).

DOI: 10.1007/bf03355422

Google Scholar

[12] Jin Ho Bang and Kenneth S. Suslick, Applications of Ultrasound to the Synthesis of Nano structured Materials, Advanced Materials 2010, 22, 1039-1059.

Google Scholar

[13] Alexandru Sergiu Nanu, Niculae Ion Marinescu, Daniel Ghiculescu, Ultrasonic Stepped Horn Geometry Design And Fem Simulation, Non-conventional Technologies Review –No. 4/(2011).

Google Scholar

[14] L. Nastac, S. Jia, D. Zhang, Y. Xuan, An experimental and modeling investigation of aluminum-based alloys and nanocomposites processed by ultrasonic cavitation processing, Applied Acoustics 103 (2016) 226–231.

DOI: 10.1016/j.apacoust.2015.07.016

Google Scholar

[15] Oh Won-Chun, Zhu Lei, Trisha Ghosh, Chong-Yeon Park, Meng Ze-Da, Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-TiO2 Composites Synthesized by an Ultrasonic-Assisted Method, Chin. J. Catal, 2012, 33: 1276–1283.

DOI: 10.1016/s1872-2067(11)60430-0

Google Scholar

[16] Liu Shi-Ying, Gao Fei-Peng, Zhang Qiong-Yuan, Zhu Xue, Li Wen-Zhen, Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing, Trans. Nonferrous Met. Soc. China 20(2010) 1222−1227.

DOI: 10.1016/s1003-6326(09)60282-x

Google Scholar

[17] G. Cao, H. Konishi, X. Li, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Materials Science and Engineering A 486 (2008) 357–362.

DOI: 10.1016/j.msea.2007.09.054

Google Scholar

[18] Z. Porat , H. Friedman, S. Reich, R. Popovitz-Biro, P. von Huth, I. Halevy, Y. Koltypin, A. Gedanken, Micro and nano-spheres of low melting point metals and alloys formed by ultrasonic cavitation, Ultrasonics Sonochemistry 20 (2013) 432–444.

DOI: 10.1016/j.ultsonch.2012.08.009

Google Scholar

[19] J. Babu Rao, I. Narasimha Murthy, D. Venkata Rao, Microstructure and mechanical properties of aluminum–fly ash nano composites made by ultrasonic method, Materials and Design 35 (2012) 55–65.

DOI: 10.1016/j.matdes.2011.10.019

Google Scholar

[20] Xia Zhou, Shangyu Song, Li Li, Wuming M, Numerical simulation and experimental validation of SiC nanoparticle distribution in magnesium melts during ultrasonic cavitation based processing of magnesium matrix nanocomposites, j. material research technology. 2014; 3(4):296–302.

DOI: 10.1016/j.ultsonch.2014.12.010

Google Scholar

[21] Jayakrishnan Nampoothiri, R. Sri Harini, Susanta Kumar Nayak, Baldev Raj, K.R. Ravi, Post in-situ Reaction Ultrasonic Treatment for generation Al-4.4Cu/TiB2 Nanocomposite: A Route to enhance the strength of Metal Matrix Nanocomposites, Journal of Alloys and Compounds, S0925-8388(16)31394-9.

DOI: 10.1016/j.jallcom.2016.05.067

Google Scholar

[22] Song-Li Zhang, Xian-Wei Dong, Yu-Tao Zhao, Man-Ping Liu, Gang Chen, Zhen-kun ZHANG, Yu-ying ZHANG, Xue-hua GAO, Preparation and wear properties of TiB2/Al−30Si composites via in-situ melt reactions under high-energy ultrasonic field, Trans. Nonferrous Met. Soc. China 24(2014) 3894−3900.

DOI: 10.1016/s1003-6326(14)63548-2

Google Scholar

[23] D.L. Duan, Y. Liu, S.L. Jiang, S. Li, Preparation and its cavitation performance of nickel foam/epoxy/SiC co-continuous composites, Wear 332-333 (2015) 979–987.

DOI: 10.1016/j.wear.2014.12.025

Google Scholar

[24] Madhukar, P., Selvaraj, N., Rao, C.S.P, 2016, Manufacturing of aluminium nano hybrid composites: a state of review,, Materials Science and Engineering, 149, p.12114.

DOI: 10.1088/1757-899x/149/1/012114

Google Scholar