[1]
D.B. Miracle, Metal matrix composites - From science to technological significance, Compos. Sci. Technol. 65 (2005) 2526–2540.
DOI: 10.1016/j.compscitech.2005.05.027
Google Scholar
[2]
B.L. Mordike, T. Ebert, Magnesium Properties - applications — potential, 302 (2001) 37–45.
Google Scholar
[3]
A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Mechanical behavior of AZ31/Al2O3magnesium alloy nanocomposites prepared using ultrasound assisted stir casting, Compos. Part B Eng. 123 (2017) 64–73.
DOI: 10.1016/j.compositesb.2017.05.007
Google Scholar
[4]
F. Pan, M. Yang, X. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol. 32 (2016) 1211–1221.
DOI: 10.1016/j.jmst.2016.07.001
Google Scholar
[5]
A. Kumar, S. Kumar, N.K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites, J. Magnes. Alloy. 000 (2018) 1–10.
DOI: 10.1016/j.jma.2018.05.006
Google Scholar
[6]
Magnesium , Magnesium Alloys , and magnesium composites, n.d.
Google Scholar
[7]
H. Dieringa, K.U. Kainer, Magnesium matrix composites: State-of the-art and what's the future, 20th Int. Symp. Process. Fabr. Adv. Mater. PFAM XX, December 15, 2011 - December 18. 410 (2012) 275–278.
DOI: 10.4028/www.scientific.net/AMR.410.275
Google Scholar
[8]
M. Toozandehjani, N. Kamarudin, Z. Dashtizadeh, E.Y. Lim, A. Gomes, C. Gomes, Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited, Am. J. Aerosp. Eng. 5 (2018) 9–15.
DOI: 10.11648/j.ajae.20180501.12
Google Scholar
[9]
J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. 92–93 (1999) 1–7.
DOI: 10.1016/S0924-0136(99)00118-1
Google Scholar
[10]
B. Chandra Kandpal, J. Kumar, H. Singh, Manufacturing and technological challenges in Stir casting of metal matrix composites- A Review, Mater. Today Proc. 5 (2018) 5–10.
DOI: 10.1016/j.matpr.2017.11.046
Google Scholar
[11]
A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloy. 1 (2013) 2–22.
DOI: 10.1016/j.jma.2013.02.002
Google Scholar
[12]
N. Harnby, M.F. Edwards, A.W. Nienow, Mixing in the Process Industries: Second Edition, (1997) 432. http://books.google.com/books?id=LxdFnHQcXhgC&pgis=1.
Google Scholar
[13]
S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite, J. Mater. Process. Technol. 171 (2006) 268–273.
DOI: 10.1016/j.jmatprotec.2005.06.071
Google Scholar
[14]
G. Cao, H. Konishi, X. Li, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Mater. Sci. Eng. A. 486 (2008) 357–362.
DOI: 10.1016/j.msea.2007.09.054
Google Scholar
[15]
J. Lan, Y. Yang, X. Li, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, 386 (2004) 284–290.
DOI: 10.1016/j.msea.2004.07.024
Google Scholar
[16]
M. Qian, A. Ramirez, A. Das, D.H. Stjohn, The effect of solute on ultrasonic grain refinement of magnesium alloys, J. Cryst. Growth. 312 (2010) 2267–2272.
DOI: 10.1016/j.jcrysgro.2010.04.035
Google Scholar
[17]
M.C. Gui, J.M. Han, P.Y. Li, J.M. Han, P.Y.L. Microstructure, M.C. Gui, J.M. Han, P.Y. Li, Microstructure and mechanical properties of Mg – Al9Zn / SiC p composite produced by vacuum stir casting process Microstructure and mechanical properties of Mg – Al9Zn / SiC p composite produced by vacuum stir casting process, Mater. Sci. Technol. 20 (2013) 765–771.
DOI: 10.1179/026708304225017319
Google Scholar
[18]
G.I. Eskin, Ultrasonic Treatment of Light Alloy melts, 1998th ed., CRC Press, (1998).
Google Scholar
[19]
E. Piyush, R. Raghu, M.S. Rakesh, S.G. Sriram, Magnesium Alloy Casting Technology for Automotive Applications- A Review, Int. Res. J. Eng. Technol. 04 (2017) 675–681.
Google Scholar
[20]
K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, Effect of ultrasonic vibration and solution heat treatment on microstructures and tensile properties of AZ91 alloy, Mater. Sci. Eng. A. 528 (2011) 7484–7487.
DOI: 10.1016/j.msea.2011.06.072
Google Scholar
[21]
K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd. 509 (2011) 8664–8669.
DOI: 10.1016/j.jallcom.2011.06.091
Google Scholar
[22]
K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration, Mater. Sci. Eng. A. 540 (2012) 123–129.
DOI: 10.1016/j.msea.2012.01.112
Google Scholar
[23]
S. García-rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, J. Rams, Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91 / SiCp composites, Wear. 390–391 (2017) 1–10.
DOI: 10.1016/j.wear.2017.06.010
Google Scholar
[24]
I. Aatthisugan, A. Razal Rose, D. Selwyn Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite, J. Magnes. Alloy. 5 (2017) 20–25.
DOI: 10.1016/j.jma.2016.12.004
Google Scholar
[25]
S.V. Muley, S.P. Singh, P. Sinha, P.P. Bhingole, G.P. Chaudhari, Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior, Mater. Des. 53 (2014) 475–481.
DOI: 10.1016/j.matdes.2013.07.056
Google Scholar
[26]
D. Gao, Z. Li, Q. Han, Q. Zhai, Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy, Mater. Sci. Eng. A. 502 (2009) 2–5.
DOI: 10.1016/j.msea.2008.12.005
Google Scholar
[27]
X. Liu, Y. Osawa, S. Takamori, T. Mukai, Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification, Mater. Lett. 62 (2008) 2872–2875.
DOI: 10.1016/j.matlet.2008.01.063
Google Scholar
[28]
X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing, Mater. Des. (2014).
DOI: 10.1016/j.matdes.2014.01.022
Google Scholar