Recent Studies on the Fabrication of Magnesium Based Metal Matrix Nano-Composites by Using Ultrasonic Stir Casting Technique - A Review

Article Preview

Abstract:

This paper presents the recent studies on the fabrication of magnesium based metal matrix nanocomposites (MMMC) by using ultrasonic assisted stir casting technique. The pure metal and alloys, due to their limited mechanical properties are not suitable for various engineering applications. It has been observed that the addition of suitable reinforcements into metallic matrix improves the specific strength, ultimate tensile strength, porosity and wear properties as compared to the conventional and monolithic engineering materials for aerospace and automotive applications. The effects of ultrasonic vibrations and the resulting uniform dispersion of reinforcements on the mechanical and tribological properties of magnesium based MMCs are specifically highlighted in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

889-894

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Miracle, Metal matrix composites - From science to technological significance, Compos. Sci. Technol. 65 (2005) 2526–2540.

DOI: 10.1016/j.compscitech.2005.05.027

Google Scholar

[2] B.L. Mordike, T. Ebert, Magnesium Properties - applications — potential, 302 (2001) 37–45.

Google Scholar

[3] A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Mechanical behavior of AZ31/Al2O3magnesium alloy nanocomposites prepared using ultrasound assisted stir casting, Compos. Part B Eng. 123 (2017) 64–73.

DOI: 10.1016/j.compositesb.2017.05.007

Google Scholar

[4] F. Pan, M. Yang, X. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol. 32 (2016) 1211–1221.

DOI: 10.1016/j.jmst.2016.07.001

Google Scholar

[5] A. Kumar, S. Kumar, N.K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites, J. Magnes. Alloy. 000 (2018) 1–10.

DOI: 10.1016/j.jma.2018.05.006

Google Scholar

[6] Magnesium , Magnesium Alloys , and magnesium composites, n.d.

Google Scholar

[7] H. Dieringa, K.U. Kainer, Magnesium matrix composites: State-of the-art and what's the future, 20th Int. Symp. Process. Fabr. Adv. Mater. PFAM XX, December 15, 2011 - December 18. 410 (2012) 275–278.

DOI: 10.4028/www.scientific.net/AMR.410.275

Google Scholar

[8] M. Toozandehjani, N. Kamarudin, Z. Dashtizadeh, E.Y. Lim, A. Gomes, C. Gomes, Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited, Am. J. Aerosp. Eng. 5 (2018) 9–15.

DOI: 10.11648/j.ajae.20180501.12

Google Scholar

[9] J. Hashim, L. Looney, M.S.J. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. 92–93 (1999) 1–7.

DOI: 10.1016/S0924-0136(99)00118-1

Google Scholar

[10] B. Chandra Kandpal, J. Kumar, H. Singh, Manufacturing and technological challenges in Stir casting of metal matrix composites- A Review, Mater. Today Proc. 5 (2018) 5–10.

DOI: 10.1016/j.matpr.2017.11.046

Google Scholar

[11] A.A. Luo, Magnesium casting technology for structural applications, J. Magnes. Alloy. 1 (2013) 2–22.

DOI: 10.1016/j.jma.2013.02.002

Google Scholar

[12] N. Harnby, M.F. Edwards, A.W. Nienow, Mixing in the Process Industries: Second Edition, (1997) 432. http://books.google.com/books?id=LxdFnHQcXhgC&pgis=1.

Google Scholar

[13] S.B. Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite, J. Mater. Process. Technol. 171 (2006) 268–273.

DOI: 10.1016/j.jmatprotec.2005.06.071

Google Scholar

[14] G. Cao, H. Konishi, X. Li, Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing, Mater. Sci. Eng. A. 486 (2008) 357–362.

DOI: 10.1016/j.msea.2007.09.054

Google Scholar

[15] J. Lan, Y. Yang, X. Li, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, 386 (2004) 284–290.

DOI: 10.1016/j.msea.2004.07.024

Google Scholar

[16] M. Qian, A. Ramirez, A. Das, D.H. Stjohn, The effect of solute on ultrasonic grain refinement of magnesium alloys, J. Cryst. Growth. 312 (2010) 2267–2272.

DOI: 10.1016/j.jcrysgro.2010.04.035

Google Scholar

[17] M.C. Gui, J.M. Han, P.Y. Li, J.M. Han, P.Y.L. Microstructure, M.C. Gui, J.M. Han, P.Y. Li, Microstructure and mechanical properties of Mg – Al9Zn / SiC p composite produced by vacuum stir casting process Microstructure and mechanical properties of Mg – Al9Zn / SiC p composite produced by vacuum stir casting process, Mater. Sci. Technol. 20 (2013) 765–771.

DOI: 10.1179/026708304225017319

Google Scholar

[18] G.I. Eskin, Ultrasonic Treatment of Light Alloy melts, 1998th ed., CRC Press, (1998).

Google Scholar

[19] E. Piyush, R. Raghu, M.S. Rakesh, S.G. Sriram, Magnesium Alloy Casting Technology for Automotive Applications- A Review, Int. Res. J. Eng. Technol. 04 (2017) 675–681.

Google Scholar

[20] K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, Effect of ultrasonic vibration and solution heat treatment on microstructures and tensile properties of AZ91 alloy, Mater. Sci. Eng. A. 528 (2011) 7484–7487.

DOI: 10.1016/j.msea.2011.06.072

Google Scholar

[21] K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloys Compd. 509 (2011) 8664–8669.

DOI: 10.1016/j.jallcom.2011.06.091

Google Scholar

[22] K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration, Mater. Sci. Eng. A. 540 (2012) 123–129.

DOI: 10.1016/j.msea.2012.01.112

Google Scholar

[23] S. García-rodríguez, B. Torres, A. Maroto, A.J. López, E. Otero, J. Rams, Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91 / SiCp composites, Wear. 390–391 (2017) 1–10.

DOI: 10.1016/j.wear.2017.06.010

Google Scholar

[24] I. Aatthisugan, A. Razal Rose, D. Selwyn Jebadurai, Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite, J. Magnes. Alloy. 5 (2017) 20–25.

DOI: 10.1016/j.jma.2016.12.004

Google Scholar

[25] S.V. Muley, S.P. Singh, P. Sinha, P.P. Bhingole, G.P. Chaudhari, Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior, Mater. Des. 53 (2014) 475–481.

DOI: 10.1016/j.matdes.2013.07.056

Google Scholar

[26] D. Gao, Z. Li, Q. Han, Q. Zhai, Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy, Mater. Sci. Eng. A. 502 (2009) 2–5.

DOI: 10.1016/j.msea.2008.12.005

Google Scholar

[27] X. Liu, Y. Osawa, S. Takamori, T. Mukai, Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification, Mater. Lett. 62 (2008) 2872–2875.

DOI: 10.1016/j.matlet.2008.01.063

Google Scholar

[28] X.J. Wang, N.Z. Wang, L.Y. Wang, X.S. Hu, K. Wu, Y.Q. Wang, Y.D. Huang, Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing, Mater. Des. (2014).

DOI: 10.1016/j.matdes.2014.01.022

Google Scholar