[1]
Asdrubali F., Ferracuti B., Lombardi L., Guattari C., Evangelisti L., Grazieschi G.: A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications. Building and Environment, vol. 114 (2017), pp.307-332.
DOI: 10.1016/j.buildenv.2016.12.033
Google Scholar
[2]
K.C. Cheung: Wooden Structures. Reference Module in Materials Science and Materials Engineering (USA 2016).
Google Scholar
[3]
D.D. Koroteev, F.A. Boytemirov, N.A. Stashevskaya: The strength research of the adhesive joints of sheet structures. Journal of Fundamental and Applied Sciences, vol. 9(7S) (2017), pp.414-424.
Google Scholar
[4]
A. Cavalli, M. Malavolti, A. Morosini, A. Salvini, M. Togni: Mechanical performance of full scale steel-timber epoxy joints after exposure to extreme environmental conditions. International Journal of Adhesion and Adhesives, vol. 54 (2014), pp.86-92.
DOI: 10.1016/j.ijadhadh.2014.05.005
Google Scholar
[5]
V. De Luca, C. Marano: Prestressed glulam timbers reinforced with steel bars. Construction and Building Materials, vol. 30 (2012), pp.206-217.
DOI: 10.1016/j.conbuildmat.2011.11.016
Google Scholar
[6]
T. Reynolds, R. Harris, W. Chang: Nonlinear pre-yield modal properties of timber structures with large-diameter steel dowel connections. Engineering Structures, vol. 76 (2014), pp.235-244.
DOI: 10.1016/j.engstruct.2014.07.010
Google Scholar
[7]
M. Audebert, D. Dhima, M. Taazount, A. Bouchair: Numerical investigations on the thermo-mechanical behavior of steel-to-timber joints exposed to fire. Engineering Structures, vol. 33(12) (2011), pp.3257-3268.
DOI: 10.1016/j.engstruct.2011.08.021
Google Scholar
[8]
M.A. Bradford, A. Hassanieh, H.R. Valipour, S.J. Foster: Sustainable Steel-timber Joints for Framed Structures. Procedia Engineering, vol. 172 (2017), pp.2-12.
DOI: 10.1016/j.proeng.2017.02.011
Google Scholar
[9]
J. Custodio, J. Broughton, H. Cruz: A review of factors influencing the durability of structural bonded timber joints. International Journal of Adhesion and Adhesives, vol. 29(2) (2009), pp.173-185.
DOI: 10.1016/j.ijadhadh.2008.03.002
Google Scholar
[10]
N. Gattesco, A. Gubana, M. Buttazzi, M. Melotto: Experimental investigation on the behavior of glued-in rod joints in timber beams subjected to monotonic and cyclic loading. Engineering Structures, vol. 147 (2017), pp.372-384.
DOI: 10.1016/j.engstruct.2017.03.078
Google Scholar
[11]
V. Di Maria, L. D'Andria, G. Muciaccia, A. Ianakiev: Influence of elevated temperature on glued-in steel rods for timber elements. Construction and Building Materials, vol. 147 (2017), pp.457-465.
DOI: 10.1016/j.conbuildmat.2017.04.038
Google Scholar
[12]
C. Sandhaas, J.G. van de Kuilen: Strength and stiffness of timber joints with very high strength steel dowels. Engineering Structures, vol. 131 (2017), pp.394-404.
DOI: 10.1016/j.engstruct.2016.10.046
Google Scholar
[13]
GOST 34028-2016, Reinforcing rolled products for reinforced concrete constructions. Specifications, Moscow, Russia, 2016. URL: http:// http://docs.cntd.ru/document/1200144936.
Google Scholar
[14]
J. Kim, D. Park, C. Lee, K. Park, J. Lee: Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood. Cryogenics, vol. 72(1) (2015), pp.90-102.
DOI: 10.1016/j.cryogenics.2015.09.007
Google Scholar
[15]
SP 64.13330.2017, Timber structures, Moscow, Russia, 2017. URL: http:// http://docs.cntd.ru/document/456082589.
Google Scholar