Matera Building Stones: Comparison between Bioclastic and Lithoclastic Calcarenites

Article Preview

Abstract:

Matera (Basilicata, southern Italy) was awarded World Heritage Site status by the UNESCO since 1993, and it will be the European Capital of Culture in 2019. It is one of the most ancient towns in the world, whose historical centre was totally built by only a moderately lithified and highly porous sedimentary building stone, known as Gravina Calcarenite. This easily workable rock was quarried since prehistoric times, and it was used for building different kind of constructions from the rupestrian settlement to the gorgeous historic palace during the XVIII century. Calcarenite, however, can be an extremely heterogeneous building material depending on the composition of the particles and their characteristics. After a geological survey, it was possible to recognize two main varieties of this building stone, which were in turn subdivided into six sub-typologies. As a first approach, we have characterized, in terms of building stone quality, the two main varieties: the bioclastic calcarenite and the lithoclastic calcarenite, sampled in the quarrying area to the North of Matera. The bioclastic calcarenite is from a new quarry in the upper part of the Calcarenite Formation, while the lithoclastic calcarenite is from an old quarry, inactive since 1965, in the lower part of the same formation. Mineralogical, petrographic and petrophysical tests have been carried out according to European Standards rules to highlight the main characteristics of different calcarenite types when used as building stone. Despite of their compositional differences, the bioclastic and lithoclastic calcarenite are both pure limestones with slightly different amounts of non-carbonates (silt quartz, clay minerals). The slightly different but characteristic mechanical properties clearly characterize the primary influence of grain composition, early cementation and micrite contents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-49

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. F. Andriani and N. Walsh: Physical properties and textural parameters of calcarenitic rocks: qualitative and quantitative evaluations, Engineering Geology (2002), n. 67, p.5–15.

DOI: 10.1016/s0013-7952(02)00106-0

Google Scholar

[2] V. Cotecchia: Dissesti statici e stato di conservazione dei manufatti dei sassi di Matera in rapporto degli aspetti fisici del territorio e dell'attività antropica, Geologia applicata ed idrogeologia. X parte, (1975).

Google Scholar

[3] A. Guida and I. Mecca: In: Architectural Heritage and Sustinable Development of Small and Medium Cities in South Mediterranean Regions, Innovazione nelle tecniche e nei processi costruttivi tradizionali per la riconversione turistica e residenziale dei Sassi di Matera, Collana Architettura, Ed. ETS Firenze, (2005) p.443–458.

Google Scholar

[4] A. Calia, M. Sileo and L. Matera: In: Stone in Historic Buildings: Characterization and Performance, Provenance, characterization and decay of a porous calcarenite of the Puglia region (Pietra Gentile), Smith JWN, editors. Geological Society, London (2014), p.47–70.

DOI: 10.1144/sp391.11

Google Scholar

[5] I. Mecca: In situ experimentations for the compatibility and durability of the restorations: the case study of the Sassi of Matera, Vitruvio, International Journal of Architecture Technology and Sustainability Vol.1, (2016).

DOI: 10.4995/vitruvio-ijats.2016.5686

Google Scholar

[6] C. D. Fonseca: In: Chiese e Asceteri Rupestri di Matera, Civiltà rupestre nel Mezzogiorno medioevale, La Scaletta, Ed. De Luca (1995), p.13–17.

Google Scholar

[7] G. F. Andriani, and N. Walsh: Petrophysical and mechanical properties of soft and porous buildings used in Apulian monuments (south Italy), Geological Society, London, Special Publication, Vol. 333 (2010) p.129–141.

DOI: 10.1144/sp333.13

Google Scholar

[8] L. Rampazzi, A. Andreotti, A. Bressan, M.P. Colombini, C. Corti, O. Cuzman, N. D'Alessandro, L. Liberatore, L. Palombi, V. Raimondi, B. Sacchi, P. Tiano. L. Tonucci, S. Vettori, E. Zanardini and G. Ranalli: An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy), Applied Surface Science, Vol. 458 (2018), pp.529-539, ISSN 0169-4332. https://doi.org/10.1016/j.apsusc.2018.07.101.

DOI: 10.1016/j.apsusc.2018.07.101

Google Scholar

[9] F.T. Gizzi, M. Sileo, M. Biscione, M. Danese and M. Alvarez de Buergo: The conservation state of the Sassi of Matera site (Southern Italy) and its correlation with the environmental conditions analysed through spatial analysis techniques, Journal of Cultural Heritage, Vol. 17 (2016), pp.61-74. ISSN 1296-2074. https://doi.org/10.1016/j.culher.2015.05.002.

DOI: 10.1016/j.culher.2015.05.002

Google Scholar

[10] G. Alfano, G. Lustrato, C. Belli, E. Zanardini, F. Cappitelli, E. Mello, C. Sorlini and G. Ranalli: The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment, International Biodeterioration & Biodegradation, Vol. 65, Issue 7 (2011), pp.1004-1011, ISSN 0964-8305, https://doi.org/10.1016/j.ibiod. 2011.07.010.

DOI: 10.1016/j.ibiod.2011.07.010

Google Scholar

[11] L. Germinario, G.F. Andriani, and R. Laviano: Decay of calcareous building stone under the combined action of thermoclastism and cryoclastism: A laboratory simulation, Construction and Building Materials, Vol. 75 (2015), p.385–394.

DOI: 10.1016/j.conbuildmat.2014.11.035

Google Scholar

[12] M. Franzini, M. Lezzerini and L. Mannella: The stones of medieval buildings in Pisa and Lucca (western Tuscany, Italy), – Green and white-pink quartzites from Mt. Pisano", Eur. J. Mineral., Vol. 13 (2001), p.187–195.

DOI: 10.1127/0935-1221/01/0013-0187

Google Scholar

[13] M. Franzini, L. Leoni, M. Lezzerini and R. Cardelli: Relationships between mineralogical composition, water adsorption and hydric dilatation in the Macigno, sandstones from Lunigiana (Massa, Tuscany), Eur. J. Mineral., Vol. 19 (2007), p.113–123.

DOI: 10.1127/0935-1221/2007/0019-0113

Google Scholar

[14] L. Leoni, M. Lezzerini, S. Battaglia and F. Cavalcante: Corrensite and chlorite-rich Chl-S mixed layers in sandstones from the Macigno, Formation (northwestern Tuscany, Italy), Clay minerals, Vol. 45 (2010), p.87–106.

DOI: 10.1180/claymin.2010.045.1.87

Google Scholar

[15] S. Columbu, A. Gioncada, M. Lezzerini and M. Marchi: Hydric dilatation of ignimbritic stones used in the church of Santa Maria di Otti (Oschiri, northern Sardinia, Italy), Ital. J. Geosci. (Boll. Soc. Geol. It, Vol.133/1 (2014), p.149–160.

DOI: 10.3301/ijg.2013.20

Google Scholar

[16] P. Pieri, L. Sabato and M. Tropeano: Significato geodinamico dei caratteri de posizionali e strutturali della Fossa Bradanica nel Pleistocene, Mem. Soc. Geol. Ital., Vol. 51 (1996), p.501– 515.

Google Scholar

[17] L. Pomar and M. Tropeano: The Calcarenite di Gravina Formation in Matera (southern Italy): New insights for coarse-grained, large-scale, cross-bedded bodies encased in offshore deposits, AAPG The American Association of Petroleum Geologists, Bullettin Vol. 85/4 (2001), p.661–689.

DOI: 10.1306/8626c979-173b-11d7-8645000102c1865d

Google Scholar

[18] M. Tropeano and L. Sabato: Response of Plio-Pleistocene mixed bioclastic-lithoclastic temperate-water carbonate systems to forced regressions: the Calcarenite di Gravina Formation, Puglia SE Italy, In: Hunt, D. Gawthorpe, R.L. (Eds.), Sedimentary Responses to Forced Regressions. Geol. Soc. of London, Spec. Publ. n. 172 (2000), p.217–243.

DOI: 10.1144/gsl.sp.2000.172.01.11

Google Scholar

[19] M. Tropeano, L. Sabato, and P. Pieri: In: Sediment Flux to Basins: Causes, Controls and Consequences, Filling and cannibalization of a foredeep: the Bradanic Trough (southern Italy), Geol. Soc. of London, Spec. Publ. 191 (2002), p.55–79.

DOI: 10.1144/gsl.sp.2002.191.01.05

Google Scholar

[20] G. Mateau-Vincens, L. Pomar and M. Tropeano: Architectural complexity of a carbonate transgressive systems tract induced by basement physiography, Sedimentology, Vol 55 (2008), p.1815–1848.

DOI: 10.1111/j.1365-3091.2008.00968.x

Google Scholar

[21] A. Azzaroli: Studi illustrativi della Carta Geologica d'Italia - Formazioni Geologiche, Servizio Geologico d'Italia, Vol. 1 (1968), p.183–185.

Google Scholar

[22] F. Boenzi, B. Radina, G. Ricchetti, and A. Valduga: Note Illustrative della Carta Geologica It. Foglio 200 – Matera, It. Geol. Serv., Roma (1971b), pp.1-48.

Google Scholar

[23] N. Ciaranfi, E. Ghisetti, M. Guida, G. Iaccarino, S. Lambiase, P. Pieri, L. Rapisardi, G. Ricchetti, M. Torre, L. Tortorici and L. Vezzani: Carta Neotettonica dell'Italia meridionale, Progetto Finalizzato Geodinamica del CNR, Vol. 515 (1983).

Google Scholar

[24] C. Doglioni: Some remarks on the origin of foredeeps, Tectonophysics, Vo. 228 (1993), p.1–20.

DOI: 10.1016/0040-1951(93)90211-2

Google Scholar

[25] V. Festa, A. Fiore. M. Luisi, M.N. Miccoli and L. Spalluto: Petrographic features influencing basic geotechnical parameters of carbonate soft rocks from Apulia (southern Italy), Engineering Geology Vol. 233 (2018), p.76–97.

DOI: 10.1016/j.enggeo.2017.12.009

Google Scholar

[26] G. Rospi G, E. Negro, T. Cardinale and N. Cardinale: Microclimate of territory of Matera and the heat island effect, Energy Procedia, Vol. 133 (2017), pp.2-15. ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.09.361.

DOI: 10.1016/j.egypro.2017.09.361

Google Scholar

[27] F.R. D'Ambrosio Alfano, S. Ferlisi, B.I. Palella and G. Riccio: Analysis of evapotranspiration processes in the Sassi of Matera (southern Italy), Energy Procedia, Vol. 133 (2017), pp.109-120. ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.09.377.

DOI: 10.1016/j.egypro.2017.09.377

Google Scholar

[28] T. Cardinale, G. Rospi and N. Cardinale: The Influence of Indoor Microclimate on Thermal Comfort and Conservation of Artworks: The Case Study of the Cathedral of Matera (South Italy), Energy Procedia, Vol. 59 (2014), pp.425-432. ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2014.10.398.

DOI: 10.1016/j.egypro.2014.10.398

Google Scholar

[29] E. Negro, T. Cardinale, N. Cardinale and G. Rospi: Italian Guidelines for Energy Performance of Cultural Heritage and Historical Buildings: The Case Study of the Sassi of Matera, Energy Procedia, Vol. 97 (2016), pp.7-14. ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2016.10.008.

DOI: 10.1016/j.egypro.2016.10.008

Google Scholar

[30] R.J. Dunham: Classification of carbonate rocks according to depositional texture, In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. AAPG Memoir Vol.1 (1962), p.108–121.

Google Scholar

[31] A.F. Embry and J.E. Klovan: A late Devonian reef tract on northeastern Banks Island, N.W.T. Bull. Can. Petrol. Geol. Vol. 19/4 (1971), p.730–781.

Google Scholar

[32] M.E. Tucker and V.P. Wright: Carbonate Sedimentology. Blackwell, Oxford, (1990).

Google Scholar

[33] EN 1936: Natural stone test methods - Determination of real density and apparent density, and of total and open porosity (1999).

DOI: 10.3403/01663707

Google Scholar

[34] M. Franzini and M. Lezzerini: A mercury-displacement method for stone bulk-density determinations, Eur. J. Mineral., 2003, vol. 15, p.225–229.

DOI: 10.1127/0935-1221/2003/0015-0225

Google Scholar

[35] EN 1925: Natural stone test methods - Determination of water absorption coefficient by capillarity (1999).

Google Scholar

[36] EN 13755: Natural stone test methods - Determination of water absorption at atmospheric pressure (2001).

Google Scholar

[37] EN 1926: Natural stone test methods - Determination of compressive strength (1999).

Google Scholar