Numerical Study on Axial Crushing of Auxetic Foam-Filled Square Tube

Article Preview

Abstract:

Filling the thin-walled tubes with a foam core is a typical method to enhance the energy absorption performance and stabilize their crushing responses under impact loading. Recently, auxetic foam material with negative Poisson’s ratio has gained remarkable popularity as an effective candidate to enhance the energy absorption capability of structures. In this paper, polyurethane auxetic foam is suggested as a foam core with the negative Poisson’s ratio of-0.31. Numerical simulation was performed to quantify the crush characteristics of auxetic foam-filled square aluminum tubes for variations in initial width of tube under quasi-static axial loading using the nonlinear finite element (FE) code LS-Dyna. Based on the numerical results, the influence of tube width was quantified in terms of energy absorption (EA), specific energy absorption (SEA), initial peak force (Pmax) and crush force efficiency (CFE). It is found that the progressive collapse and deformation modes of auxetic foam-filled tube (AFFT) is pronouncedly affected by varying the tube width. Furthermore, the SEA of AFFT is remarkably sensitive to the tube width variations, yet show low sensitivity to the EA of AFFT. The present study provides new design information on the crush response and energy absorption performance of auxetic foam-filled square tube with varying tube width.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Langseth, O. Hopperstad, A. Hanssen: Thin-walled structures 32(1-3) (1998) 127-150.

DOI: 10.1016/s0263-8231(98)00030-5

Google Scholar

[2] Z. Ahmad, D. Thambiratnam, A. Tan: International Journal of Impact Engineering 37(5) (2010) 475-488.

Google Scholar

[3] A. Eyvazian, M.K. Habibi, A.M. Hamouda, R. Hedayati: Materials & Design (1980-2015) 54 (2014) 1028-1038.

DOI: 10.1016/j.matdes.2013.09.031

Google Scholar

[4] A. Eyvazian, T. Tran, A.M. Hamouda: International Journal of Non-Linear Mechanics 101 (2018) 86-94.

Google Scholar

[5] R.D. Hussein, D. Ruan, G. Lu, S. Guillow, J.W. Yoon: Thin-Walled Structures 110 (2017) 140-154.

DOI: 10.1016/j.tws.2016.10.023

Google Scholar

[6] Z. Ahmad, D. Thambiratnam: Materials & design 30(7) (2009) 2393-2403.

Google Scholar

[7] K. Andrews, G. England, E. Ghani: International Journal of Mechanical Sciences 25(9-10) (1983) 687-696.

Google Scholar

[8] W. Abramowicz, N. Jones: International Journal of Impact Engineering 2(2) (1984) 179-208.

Google Scholar

[9] M. Langseth, O. Hopperstad: International Journal of Impact Engineering 18(7-8) (1996) 949-968.

Google Scholar

[10] A.G. Hanssen, M. Langseth, O.S. Hopperstad: International Journal of Impact Engineering 24(4) (2000) 347-383.

Google Scholar

[11] R. Lakes: Science 235 (1987) 1038-1041.

Google Scholar

[12] K.E. Evans, M. Nkansah, I. Hutchinson, S. Rogers: Nature 353(6340) (1991) 124.

Google Scholar

[13] M.S. Rad, S. Mohsenizadeh, Z. Ahmad: J. Eng. Sci. Technol 12 (2017) 471-490.

Google Scholar

[14] S. Mohsenizadeh, R. Alipour, A.F. Nejad, M.S. Rad, Z. Ahmad, Experimental investigation on energy absorption of auxetic foam-filled thin-walled square tubes under quasi-static loading, Procedia Manufacturing 2 (2015) 331-336.

DOI: 10.1016/j.promfg.2015.07.058

Google Scholar

[15] S. Mohsenizadeh, R. Alipour, Z. Ahmad, A. Alias: International Journal of Materials Research 107(10) (2016) 916-924.

DOI: 10.3139/146.111418

Google Scholar

[16] Y. Prawoto: Computational Materials Science 58 (2012) 140-153.

Google Scholar

[17] S. Mohsenizadeh, R. Alipour, M.S. Rad, A.F. Nejad, Z. Ahmad:Materials & Design 88 (2015) 258-268.

Google Scholar

[18] S. Mohsenizade, Z. Ahmad, A. Alias, M. Rad:Journal of Fundamental and Applied Sciences 10(3S) (2018) 446-456.

Google Scholar

[19] D. ASTM, 3574—Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams (2001).

DOI: 10.1520/d3574-05

Google Scholar