[1]
M. Sangermano, A. Chiolerio, G. Marti, and P. Martino, UV-Cured Acrylic Conductive Inks for Microelectronic Devices,, Macromol. Mater. Eng., vol. 298, no. 6, p.607–611, Jun. (2013).
DOI: 10.1002/mame.201200072
Google Scholar
[2]
M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Inkjet Printing-Process and Its Applications,, Adv. Mater., vol. 22, no. 6, p.673–685, Feb. (2010).
DOI: 10.1002/adma.200901141
Google Scholar
[3]
Y. Zhan, Y. Mei, and L. Zheng, Materials capability and device performance in flexible electronics for the Internet of Things,, J. Mater. Chem. C, vol. 2, no. 7, p.1220–1232, Jan. (2014).
DOI: 10.1039/c3tc31765j
Google Scholar
[4]
V. Sabatini, H. Farina, and M. A. Ortenzi, Conductive inks based on methacrylate end-capped poly(3,4-ethylenedioxythiophene) for printed and flexible electronics,, Polym. Eng. Sci., vol. 57, no. 6, p.491–501, Jun. (2017).
DOI: 10.1002/pen.24502
Google Scholar
[5]
V. K. R. R., V. A. K., K. P. S., and S. P. Singh, Conductive silver inks and their applications in printed and flexible electronics,, RSC Adv., vol. 5, no. 95, p.77760–77790, Sep. (2015).
DOI: 10.1039/c5ra12013f
Google Scholar
[6]
P. T. Bishop et al., Printed gold for electronic applications,, Gold Bull., vol. 43, no. 3, p.181–188, Sep. (2010).
Google Scholar
[7]
J. Perelaer and U. S. Schubert, Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications,, J. Mater. Res., vol. 28, no. 04, p.564–573, Feb. (2013).
DOI: 10.1557/jmr.2012.419
Google Scholar
[8]
B. T. Anto, S. Sivaramakrishnan, L.-L. Chua, and P. K. H. Ho, Hydrophilic Sparse Ionic Monolayer-Protected Metal Nanoparticles: Highly Concentrated Nano-Au and Nano-Ag 'Inks' that can be Sintered to Near-Bulk Conductivity at 150 °C,, Adv. Funct. Mater., vol. 20, no. 2, p.296–303, Jan. (2010).
DOI: 10.1002/adfm.200901336
Google Scholar
[9]
S. Wang, W. Zhang, Z. Song, H. Yu, Z. Jing, and Y. Liu, A concise and antioxidative method to prepare copper conductive inks in a two-phase water/xylene system for printed electronics,, Chem. Phys. Lett., vol. 708, p.28–31, (2018).
DOI: 10.1016/j.cplett.2018.07.057
Google Scholar
[10]
S. Khan, L. Lorenzelli, and R. S. Dahiya, Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review,, IEEE Sens. J., vol. 15, no. 6, p.3164–3185, Jun. (2015).
DOI: 10.1109/jsen.2014.2375203
Google Scholar
[11]
M. A. H. Khondoker, S. C. Mun, and J. Kim, Synthesis and characterization of conductive silver ink for electrode printing on cellulose film,, Appl. Phys. A, vol. 112, no. 2, p.411–418, Aug. (2013).
DOI: 10.1007/s00339-012-7419-z
Google Scholar
[12]
D. Deng, S. Feng, M. Shi, and C. Huang, In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing,, J. Mater. Sci. Mater. Electron., vol. 28, no. 20, p.15411–15417, Oct. (2017).
DOI: 10.1007/s10854-017-7427-z
Google Scholar
[13]
Y Xiao Conductive ink composition,, US patent US6322620B1, (2001).
Google Scholar
[14]
D. Kim and J. Moon, Highly Conductive Ink Jet Printed Films of Nanosilver Particles for Printable Electronics,, Electrochem. Solid-State Lett., vol. 8, no. 11, p. J30, (2005).
DOI: 10.1149/1.2073670
Google Scholar
[15]
V. Abhinav K, V. K. Rao R, P. S. Karthik, and S. P. Singh, Copper conductive inks: synthesis and utilization in flexible electronics,, RSC Adv., vol. 5, no. 79, p.63985–64030, (2015).
DOI: 10.1039/c5ra08205f
Google Scholar
[16]
A. Kamyshny, J. Steinke, and S. Magdassi, Entering the tidyverse Lessons from 'data science' Reproducible research What is reproducible research? RR concepts benefit (future) you How do we do it? How do we do it?, p.1–16, (2011).
DOI: 10.4135/9781506374734.n1
Google Scholar
[17]
Y. Tao, Y. Tao, B. Wang, L. Wang, and Y. Tai, A facile approach to a silver conductive ink with high performance for macroelectronics,, Nanoscale Res. Lett., vol. 8, no. 1, p.296, Dec. (2013).
DOI: 10.1186/1556-276x-8-296
Google Scholar
[18]
K. Woo, D. Jang, Y. Kim, and J. Moon, Relationship between printability and rheological behavior of ink-jet conductive inks,, Ceram. Int., vol. 39, no. 6, p.7015–7021, (2013).
DOI: 10.1016/j.ceramint.2013.02.039
Google Scholar
[19]
Y. Wu, Z. Wang, X. Zhao, and M. C. Tan, Size and surface effects on chemically-induced joining of Ag conductive inks,, CrystEngComm, vol. 20, no. 40, p.6300–6309, (2018).
DOI: 10.1039/c8ce01191e
Google Scholar
[20]
J. Y. Park, Y. Hirata, and K. Hamada, Relationship between the dye/additive interaction and inkjet ink droplet formation,, Dye. Pigment., vol. 95, no. 3, p.502–511, (2012).
DOI: 10.1016/j.dyepig.2012.04.019
Google Scholar
[21]
A. V. Prajapati, Y. Sonvane, and P. B. Thakor, Atomic transport properties of liquid gallium and indium,, Phys. Chem. Liq., vol. 55, no. 5, p.570–578, (2017).
DOI: 10.1080/00319104.2016.1250271
Google Scholar
[22]
M. Hummelgård, R. Zhang, H.-E. Nilsson, and H. Olin, Electrical Sintering of Silver Nanoparticle Ink Studied by In-Situ TEM Probing,, PLoS One, vol. 6, no. 2, p. e17209, Feb. (2011).
DOI: 10.1371/journal.pone.0017209
Google Scholar
[23]
S. K. Gupta, A. Gunasekaran, J. Antony, S. Gupta, S. Bag, and D. Roubaud, Systematic literature review of project failures: Current trends and scope for future research,, Comput. Ind. Eng., vol. 127, no. June 2018, p.274–285, (2019).
DOI: 10.1016/j.cie.2018.12.002
Google Scholar
[24]
A. Macpherson and O. Jones, Editorial: Strategies for the Development of International Journal of Management Reviews,, Int. J. Manag. Rev., vol. 12, no. 2, p.107–113, Jun. (2010).
Google Scholar
[25]
B. W. Mangum and D. D. Thornton, Determination of the Triple-Point Temperature of Gallium,, Metrologia, vol. 15, no. 4, p.201–215, Oct. (1979).
DOI: 10.1088/0026-1394/15/4/005
Google Scholar
[26]
S. Mei, Y. Gao, H. Li, Z. Deng, and J. Liu, Thermally induced porous structures in printed gallium coating to make transparent conductive film,, Appl. Phys. Lett., vol. 102, no. 4, p.041905, Jan. (2013).
DOI: 10.1063/1.4789978
Google Scholar
[27]
A. V. Naumov, Modern state of the world market of gallium,, Russ. J. Non-Ferrous Met., vol. 55, no. 3, p.270–276, May (2014).
DOI: 10.3103/s1067821214030122
Google Scholar
[28]
C. Mikolajczak, and B. Jackson, Availability of Indium and Gallium,, PV Magazine, no.12-2011, (2011).
Google Scholar
[29]
G. A. Hirata et al., Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes,, Thin Solid Films, vol. 288, no. 1–2, p.29–31, Nov. (1996).
DOI: 10.1016/s0040-6090(96)08862-1
Google Scholar