Nickel Cobaltite Nanoneedle/Porous Graphene Nanosheets Network Nanocomposite Electrodes with Ultra-High Specific Capacitance for Energy Storage Applications

Article Preview

Abstract:

Nickel cobaltite has become a popular energy storage material in recent years for high performance energy storage devices because of its low lost, high electronic conductivity, high electrochemical activity and environmental benignity. Nickel cobaltite (NCO)/porous graphene nanosheets network (PG) composites were synthesized via the two-steps hydrothermal method to enhance electrochemical properties in this study. The NCO/PG composite electrode demonstrated high specific capacitance of 3965 F g-1 at the current density of 1 A g-1 compared with the value of NCO that capacitance is 644 F g-1, and it maintained the 72% of the original capacitance after 3,000 charge-discharge cycles. It showed the maximum energy density of 46.3 Wh kg-1 and maximum power density of 1450 W kg-1. The NCO/GO composite has high potential as a psudocapacitance material for energy storage devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. D. Abruña, Y. Kiya and J. C. Henderson, Physics Today Vol. 61 (2008), 12, 43.

Google Scholar

[2] X. Wang, W. S. Liu, X. Lu and P. S. Lee, J. Mater. Chem., Vol. 22 (2012), p.23114–23119.

Google Scholar

[3] Y. Li, P. Hasin and Y. Wu, Adv. Mater., Vol. 22 (2010), p.1926–1929 (2010).

Google Scholar

[4] H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia and H. Wan, J. Power Sources Vol. 248 (2014), p.28–36.

Google Scholar

[5] T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu and C. C. Hu, Adv. Mater., Vol. 22 (2010), p.347–351.

Google Scholar

[6] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. W. D. Lou, Adv. Funct. Mater., Vol. 22 (2012), p.4592–4597.

Google Scholar

[7] B. Cui, H. Lin, J. B. Li, X. Li, J. Yang and J. Tao, Adv. Funct. Mater., Vol. 18 (2008), p.1440–1447.

Google Scholar

[8] H. Jiang, J. Ma and C. Li, Chem. Commun., Vol. 48 (2012), p.4465–4467.

Google Scholar

[9] A. D. Dalvi, W. G. Bacon and R. C. Osborne, The Prospectors and Developers Association of Canada, Toronto (2014), p.1–27.

Google Scholar

[10] J. Reid, Nickel, Vol. 96 (1996), p.11–16.

Google Scholar

[11] Z. Wu, Y. Zhu and X. Ji, J. Mater. Chem. A, Vol. 2 (2014), p.14759–14772.

Google Scholar

[12] M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang, J. An, Electrochim. Acta, Vol. 151 (2015), pp.99-108.

Google Scholar

[13] H. H. Oh, G. S. Gund, H. S. Park, J. Mater. Chem. A, Vol. 6 (2018), pp.22106-22114.

Google Scholar

[14] T.-H. Ko, S. Radhakrishnan, M.-K. Seo, M.-S. Khil, H.-Y. Kim, H, B.-S. Kim, B.-S., J. Alloys and Comp., Vol. 696 (2017), pp.193-200.

Google Scholar

[15] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano, Vol. 4 (2010), pp.4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[16] Q. Liu, X. Zhang, B. Yang, J. Liu, R. Li, H. Zhang, L. Liu, and J. Wang, J. Electrochem. Soc., Vol. 162 (2015), p. E319-E324.

Google Scholar

[17] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lein, Nano Energy, Vol. 8 (2014), p.231–237.

Google Scholar

[18] J. Yang, M. Cho, Y. Lee, Biosens. and Bioelectron., Vol. 75 (2016), pp.15-22.

Google Scholar

[19] J. Cheng, Y. Lu, K. Qiu, H. Yan, J. Xu, L. Han, X. Liu, J. Luo, J.-K. Kim, Y. Luo, Sci. Rep., Vol. 5 (2015), p.12099.

Google Scholar

[20] C. Zhang, X. Geng, S. Tang, M. Deng, Y. Du, J. Mater. Chem. A, Vol. 5 (2017), pp.5912-5919.

Google Scholar