[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[2]
J. Yan, M. H. Kim, J. A. Elle, et al, Dual-gated bilayer graphene hot-electron bolometer, Nat. Nanotechnol. 7 (2012) 472-478.
DOI: 10.1038/nnano.2012.88
Google Scholar
[3]
H. G. Yan, X. S. Li, B. Chandra, et al, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7 (2012) 330-334.
DOI: 10.1038/nnano.2012.59
Google Scholar
[4]
B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comp. Mater. Sci. 51 (2012) 303-313.
DOI: 10.1016/j.commatsci.2011.07.040
Google Scholar
[5]
H. Liu, J. L. Yang, Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity, Physica E. 44 (2012) 1236-1240.
DOI: 10.1016/j.physe.2012.01.018
Google Scholar
[6]
B. Arash, Q. Wang, K. M. Liew, Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation, Comput. Method. Appl. M. 223-224 (2012) 1-9.
DOI: 10.1016/j.cma.2012.02.002
Google Scholar
[7]
Y. Z. Wang, F. M. Li, K. Kishimoto, Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress, Appl. Phys. A. 99 (2010) 907-911.
DOI: 10.1007/s00339-010-5666-4
Google Scholar
[8]
J. X. Shi, Q. Q. Ni, X. W. Lei, et al, Wave propagation in embedded double-layer graphene nanoribbons as electromechanical oscillators, J. Appl. Phys. 110 (2011) 084321.
DOI: 10.1063/1.3653827
Google Scholar
[9]
J. X. Shi, Q. Q. Ni, X. W. Lei, et al, Study on wave propagation characteristics of double-layer graphene sheets via nonlocal Mindlin-Reissner plate theory, Int. J. Mech. Sci. 84 (2014) 25-30.
DOI: 10.1016/j.ijmecsci.2014.04.008
Google Scholar
[10]
Y. Z. Wang, F. M. Li, K. Kishimoto, Flexural wave propagation in double-layered nanoplates with small scale effects, J. Appl. Phys. 108 (2010) 064519.
DOI: 10.1063/1.3481438
Google Scholar
[11]
W.A. Yao, W.X. Zhong, C.W. Lim, Symplectic elasticity, World Scientific, Singapore, (2009).
Google Scholar
[12]
B. Wang, Z.C. Deng, X. J Xu. et al, Vibration analysis of embedded curved carbon nanotube subjected to a moving harmonic load based on nonlocal theory, Sci. Sinica Phys. Mech. Astronom. 43 (2013) 486-493 (in Chinese).
DOI: 10.1360/132012-727
Google Scholar
[13]
Y. Li, Z.C. Deng, X.H. Ye, et al, Analysing the wave scattering in single-walled carbon nanotube conveying fluid based on the symplectic theory, Chin. J. Theor. Appl. Mech. 48 (2016) 135-139 (in Chinese).
Google Scholar
[14]
Y. F. Xing, B. Liu, New exact solutions for free vibrations of rectangular thin plates by symplectic dual method, Acta Mech. Sinica. 25 (2008) 265-270.
DOI: 10.1007/s10409-008-0208-4
Google Scholar
[15]
Z. H. Zhou, D. L. Rong, C. Y. Yang, et al, Rigorous vibration analysis of double-layered orthotropic nanoplate system, Int. J. Mech. Sci. 123 (2017) 84-93.
DOI: 10.1016/j.ijmecsci.2017.01.029
Google Scholar
[16]
A. C. Eringen, Nonlocal continuum field theories, Springer, New York, (2002).
Google Scholar
[17]
K. M. Liew, X. Q. He, S. Kitipornchai, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Mater. 54 (2006) 4229-4236.
DOI: 10.1016/j.actamat.2006.05.016
Google Scholar
[18]
L. Shen, H. S. Shen, C. L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comp. Mater. Sci. 48 (2010) 680-685.
DOI: 10.1016/j.commatsci.2010.03.006
Google Scholar
[19]
X. Q. He, S. Kitipornchai, K. M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids. 53 (2005) 303-326.
DOI: 10.1016/j.jmps.2004.08.003
Google Scholar