Flexural Wave Propagation of Double-Layered Graphene Sheets Based on the Hamiltonian System

Article Preview

Abstract:

Double-layered graphene sheets (DLGSs) as a new type of nanocomponents, with special mechanical, electrical and chemical properties, have the potential of being applied in the nanoelectro-mechanical systems (NEMS) and nanoopto-mechanical systems (NOMS). In DLGSs structure, the two graphene sheets are connected by van der Waals (vdW) interaction. Thus, it can exhibit two vibration modes during the propagation of the flexural wave, i.e., in-phase mode and anti-phase mode. Based on the Kirchhoff plate theory and the nonlocal elasticity theory, Hamiltonian equations of the DLGSs are established by introducing the symplectic dual variables. By solving the Hamiltonian equation, the dispersion relation of the flexural wave propagation of the DLGSs is obtained. The numerical calculation indicates that the bending frequency, phase velocity and group velocity of the in-phase mode and anti-phase mode for the DLGSs are closely related to the nonlocal parameters, the foundation moduli and the vdW forces. The research results will provide theoretical basis for the dynamic design of DLGSs in micro-nanofunctional devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-126

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al, Electric field effect in atomically thin carbon films, Science. 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] J. Yan, M. H. Kim, J. A. Elle, et al, Dual-gated bilayer graphene hot-electron bolometer, Nat. Nanotechnol. 7 (2012) 472-478.

DOI: 10.1038/nnano.2012.88

Google Scholar

[3] H. G. Yan, X. S. Li, B. Chandra, et al, Tunable infrared plasmonic devices using graphene/insulator stacks, Nat. Nanotechnol. 7 (2012) 330-334.

DOI: 10.1038/nnano.2012.59

Google Scholar

[4] B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comp. Mater. Sci. 51 (2012) 303-313.

DOI: 10.1016/j.commatsci.2011.07.040

Google Scholar

[5] H. Liu, J. L. Yang, Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity, Physica E. 44 (2012) 1236-1240.

DOI: 10.1016/j.physe.2012.01.018

Google Scholar

[6] B. Arash, Q. Wang, K. M. Liew, Wave propagation in graphene sheets with nonlocal elastic theory via finite element formulation, Comput. Method. Appl. M. 223-224 (2012) 1-9.

DOI: 10.1016/j.cma.2012.02.002

Google Scholar

[7] Y. Z. Wang, F. M. Li, K. Kishimoto, Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress, Appl. Phys. A. 99 (2010) 907-911.

DOI: 10.1007/s00339-010-5666-4

Google Scholar

[8] J. X. Shi, Q. Q. Ni, X. W. Lei, et al, Wave propagation in embedded double-layer graphene nanoribbons as electromechanical oscillators, J. Appl. Phys. 110 (2011) 084321.

DOI: 10.1063/1.3653827

Google Scholar

[9] J. X. Shi, Q. Q. Ni, X. W. Lei, et al, Study on wave propagation characteristics of double-layer graphene sheets via nonlocal Mindlin-Reissner plate theory, Int. J. Mech. Sci. 84 (2014) 25-30.

DOI: 10.1016/j.ijmecsci.2014.04.008

Google Scholar

[10] Y. Z. Wang, F. M. Li, K. Kishimoto, Flexural wave propagation in double-layered nanoplates with small scale effects, J. Appl. Phys. 108 (2010) 064519.

DOI: 10.1063/1.3481438

Google Scholar

[11] W.A. Yao, W.X. Zhong, C.W. Lim, Symplectic elasticity, World Scientific, Singapore, (2009).

Google Scholar

[12] B. Wang, Z.C. Deng, X. J Xu. et al, Vibration analysis of embedded curved carbon nanotube subjected to a moving harmonic load based on nonlocal theory, Sci. Sinica Phys. Mech. Astronom. 43 (2013) 486-493 (in Chinese).

DOI: 10.1360/132012-727

Google Scholar

[13] Y. Li, Z.C. Deng, X.H. Ye, et al, Analysing the wave scattering in single-walled carbon nanotube conveying fluid based on the symplectic theory, Chin. J. Theor. Appl. Mech. 48 (2016) 135-139 (in Chinese).

Google Scholar

[14] Y. F. Xing, B. Liu, New exact solutions for free vibrations of rectangular thin plates by symplectic dual method, Acta Mech. Sinica. 25 (2008) 265-270.

DOI: 10.1007/s10409-008-0208-4

Google Scholar

[15] Z. H. Zhou, D. L. Rong, C. Y. Yang, et al, Rigorous vibration analysis of double-layered orthotropic nanoplate system, Int. J. Mech. Sci. 123 (2017) 84-93.

DOI: 10.1016/j.ijmecsci.2017.01.029

Google Scholar

[16] A. C. Eringen, Nonlocal continuum field theories, Springer, New York, (2002).

Google Scholar

[17] K. M. Liew, X. Q. He, S. Kitipornchai, Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix, Acta Mater. 54 (2006) 4229-4236.

DOI: 10.1016/j.actamat.2006.05.016

Google Scholar

[18] L. Shen, H. S. Shen, C. L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Comp. Mater. Sci. 48 (2010) 680-685.

DOI: 10.1016/j.commatsci.2010.03.006

Google Scholar

[19] X. Q. He, S. Kitipornchai, K. M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids. 53 (2005) 303-326.

DOI: 10.1016/j.jmps.2004.08.003

Google Scholar