Adsorption of Metalworking Fluids in CSTR Reactor by Modified Sugarcane Bagasse with Aluminium Sulphate as Adsorbent

Article Preview

Abstract:

Metalworking fluids (MWFs) are widely used in the metal forming industrials. It was used for reducing of the friction and cooling of the mechanical processes. In this research, the modified sugarcane bagasse (MSB) with aluminium sulphate (Al2(SO4)3) was used as an adsorbent for removal of the metalworking fluid in Continuous Stirred Tank Reactor (CSTR). The point of zero charge of sugarcane bagasse and modified sugarcane bagasse were pH 6.1 and 3.7, respectively. The effect of initial concentration of metalworking fluid was studied. When used the reactor 3 L and flow rate at 0.055 L/min, the % removals of MWF at initial concentration 6,480-41,513 g/m3 were 98.0-56.7%, respectively. The significant uptake of metalworking fluid was demonstrated by FT-IR spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-99

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Brinksmeier, D. Meyer, A.G. Huesmann-Cordes, C. Herrmann: CIRP Ann. Manuf. Technol Vol. 64 (2015), p.605.

DOI: 10.1016/j.cirp.2015.05.003

Google Scholar

[2] M. Schwarz, M. Dado, R. Hnilica, and D. Veverková: Pol. J. Environ. Stud Vol. 24 (2015), p.37.

Google Scholar

[3] N. Chawaloesphonsiya, C. Prommajun, K. Wongwailikhit and P. Painmanakul: Environ. Tecnal. Vol. 107 (2016), p.1.

Google Scholar

[4] C. Cheng, D. Phipps and R. M. Alkhaddar: Water. Res Vol. 39 (2005), p.4051.

Google Scholar

[5] D. Lu, T. Zhang, and J. Ma: Environ. Sci. Tecnol. Vol. 49 (2015), p.4235.

Google Scholar

[6] G. Crini: Bioresour. Techno Vol. 97 (2006), p.1061.

Google Scholar

[7] M. Sulyman1, J. Namiesnik1and A. Gierak: Pol. J. Environ. Stud. Vol. 26 (2017), p.479.

Google Scholar

[8] D. Angelovaa, I. Uzunovb, S. Uzunovaa, A. Gigovac and L. Minchevd: Chem. Eng. J. Vol. 172 (2011), p.306.

Google Scholar

[9] R.R. Krishnia, K.Y. Foob and B.H. Hameeda: Desalin. Watwe. Treat. Vol. 52 (2014), p.6088.

Google Scholar

[10] P. Manoj K. Reddy, P. Verma1 and C. Subrahmanyam: J. Taiwan. Inst. Chem. E. Vol. 000 (2015), p.1.

Google Scholar

[11] T. C. Sarker, S. Md Golam Gousul Azam, A. M. Abd El‑Gawad, S. A. Gaglione and G. Bonanomi1: Clean. Techn. Environ. (2017).

Google Scholar

[12] H.D. Utomo, P.R. Yi, S. Zhonghuan, N.L. Hui and L.Z. Bang: Environ. Nat. Resour. Res. Vol. 6 (2016), p.35.

Google Scholar

[13] W. Champreecha, A. Pranudta and K. Piyamongkala: The Journal of KMUTNB. Vol. 27 (2017), p.1.

Google Scholar

[14] S. Mustafa, B. Dilara, K. Nargis, A. Naeem and P. Shahida: Colloid. Surface. A : Physicochem. Eng. Aspects. Vol. 205 (2002), p.273.

Google Scholar

[15] N. Izza Husin, N. Aimi Abdul Wahab, N. Isa and R. Boudville: International Conference on Environment and Industrial Innovation. Vol. 12 (2011), p.117.

Google Scholar

[16] B. T. Washington, in: Rate laws and stoichiometry, edited by H. Scott Fogler, Elements of Chemical Reaction Engineering (2006).

Google Scholar

[17] T. Srilajan, T. Janpattanapong and K. Piyamongkala: International conference on Innovative Engineering Technologies (2014), p.161.

Google Scholar

[18] K. Piyamongkala, L. Mekasut and S. Pongstabodee: Macromol. Res Vol. 16 (2008), p.492.

Google Scholar