Acoustic Metamaterial Design Method Based on Green Coordinate Transformation

Article Preview

Abstract:

Acoustic metamaterials have great application prospects in eliminating vibration and noise, but they are difficult to manufacture due to their anisotropy. This paper utilizes the Green coordinate transformation method to design acoustic metamaterials by combining with the transformation acoustics theory. Because the Green coordinate transformation is the pseudo-conformal mapping in three-dimensional coordinates, the anisotropy of designed metamaterials can be weakened. And also, the genetic algorithm is employed to optimize the anisotropy of metamaterials and reduce the designed metamaterial parameter difference further. Finally, the membrane-imbedded-type metamaterial is applied to realize the design and to illustrate the effectiveness of the proposed method by manipulating the acoustic wave propagation path.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-24

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu Jiuhui, Ma Fuyin, Zhang Siwen. Application of Acoustic Metamaterials in Low-frequency Vibration and Noise Reduction [J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78.

DOI: 10.3901/jme.2016.13.068

Google Scholar

[2] J. B. Pendry, D. Schurig and D. R. Smith. Controlling Electromagnetic Fields [J]. Science, 2006, 312(5781): 1780-1782.

DOI: 10.1126/science.1125907

Google Scholar

[3] Leonhardt U. Optics Conformal Mapping [J]. Science, 2006, 312(5781): 1777-1780.

DOI: 10.1126/science.1126493

Google Scholar

[4] S. A. Cummer and D. Schurig. One Path to Acoustic Cloaking [J]. New J. Phys., 2007, 9: 45.

DOI: 10.1088/1367-2630/9/3/045

Google Scholar

[5] V.G. Veselago. The Electrodynamics of Substances with Simultaneously Negative Values of and [J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

DOI: 10.1070/pu1968v010n04abeh003699

Google Scholar

[6] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs. Extremely Low Frequency Plasmons in Metallic Mesostructures [J]. Physical Review Letters, 1996, 76(25): 4773-4776.

DOI: 10.1103/physrevlett.76.4773

Google Scholar

[7] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart. Magnetism from Conductors and Enhanced Nonlinear Phenomena [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

DOI: 10.1109/22.798002

Google Scholar

[8] Gao Dongbao, Zeng Xinwu. Layered Elliptical-cylindrical Acoustic Cloaking Design Based on Isotropic Materials [J]. Acta Physica Sinica, 2012, 61(18): 260-267.

DOI: 10.7498/aps.61.184301

Google Scholar

[9] Shen Huijie, Wen Jihong, Yu Dianlong, Cai Li, Wen Xisen. Research on a Cylindrical Cloak with Active Acoustic Metamaterial Layers [J]. Acta Physica Sinica, 2012, 61(13): 230-237.

DOI: 10.7498/aps.61.134303

Google Scholar

[10] Zhang S, Yin L, Fang N. Focusing Ultrasound with an Acoustic Metamaterial Network [J]. Physical Review Letters, 2009, 102(19): 194301.

DOI: 10.1103/physrevlett.102.194301

Google Scholar

[11] Li Y, Liang B, Tao X. Acoustic Focusing by Coiling up Space [J]. Applied Physics Letters, 2012, 101(23): 036609.

Google Scholar

[12] Y. Lipman, D. Levin. Derivation and Analysis of Green Coordinates [J]. Computational Methods & Function Theory, 2010, 10(1): 167-188.

DOI: 10.1007/bf03321761

Google Scholar

[13] A. N. Norris. Acoustic Cloaking Theory [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2008, 464(2097): 2411-2434.

DOI: 10.1098/rspa.2008.0076

Google Scholar

[14] Y. Li, X. M. Wang, Y. L. Mei*. Acoustic Characteristics of 3-D Membrane-embedded-type Metamaterials, Proceedings of the International Conference on Computational Methods (ICCM2017) 2017, Guilin, Guangxi, China, 914-925.

Google Scholar