Cooling Rate and Microstructural Investigation of Rapidly Solidified Spherical Mono-Sized Copper Particles

Article Preview

Abstract:

Spherical copper particles with diameter ranging from 120.6 to 437.0 μm were prepared by the pulsated orifice ejection method (termed “POEM”). These spherical copper particles exhibit a good spherical shape and a narrow size distribution, suggesting that the liquid copper can completely break the balance between the surface tension and the liquid static pressure in the crucible micropores and accurately control the volume of the droplets. Furthermore, the relationship between cooling rate and microstructures of spherical copper particles was carried out with a specific focus on different cooling atmosphere and particle diameter during the rapid solidification. The cooling rate of spherical copper particles is evaluated by a Newton’s cooling model. It is revealed that the cooling rate was depended on cooling medium and particle diameter. The cooling rate decreases and the grain size increases with the increase of particle diameter during the rapid solidification, while the grain boundary of same particle diameter with larger cooling rate in argon gas is smaller, while the grain boundary of particles with smaller cooling rate in helium gas is larger. When the particle diameter is larger than 100 μm, the cooling rate of the cooper droplet in argon gas achieves 1.0×104 K/s. Meanwhile, the cooling rate decreases rapidly when the particle diameter increased between 70.6 and 149.6 μm. It is an effective route for fabrication of high-quality spherical copper particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-49

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Z. Cheng, C.L. Lei, H,F, Huang, S.L. Tang and Y.W. Du: Mater. Des Vol. 97 (2016), p.324.

Google Scholar

[2] H. Dai, S. S. Wang, G. Zhu and P. Zeng: Mater. Lett Vol. 118 (2014), p.173.

Google Scholar

[3] I.U. Haq, K. Akhtar, and K. Malook: Mater. Res. Bull, Vol. 57(2014), p.121.

Google Scholar

[4] Y. Xu, N. Ellendt, X. G. Li, V. Uhlenwinkel and U. Fritsching: T. Nonferr. Metal. Soc, Vol. 27 (2017), p.1636.

Google Scholar

[5] C. Lei, H. Huang, Z. Cheng, S. Tang and Y. Du: Appl. Surf. Sci, Vol. 357 (2015), p.167.

Google Scholar

[6] T.N. Vorobyova, O.N. Vrublevskaya, M.G. Galuza and V.P. Glibin: Surf. Interface, Vol. 4 (2016), p.9.

Google Scholar

[7] J. T. McKeown, L. L. Hsiung, J. M. Park, H. J. Ryu, P. E. Turchi and W. E. King: J. Nucl. Mater, Vol. 4 (2016), p.1.

Google Scholar

[8] S. Lagutkin, L. Achelis, S. Sheikaliev, V. Uhlenwinkel and V. Srivastava : Mater. Sci. Eng, Vol. 383 (2004), p.1.

Google Scholar

[9] K. Takagi, S. Masuda, H. Suzuki and A. Kawasaki: Mater. Trans, Vol. 47(2006), p.1380.

Google Scholar

[10] J. Shen, Y. Liu, and H. Gao: J. Univ. Sci. Technol. Beijing. Vol. 13 (2006), p.333.

Google Scholar

[11] A. Miura, W. Dong, M. Fukue, N. Yodoshi, K. Takagi and A. Kawasaki: J. Alloys. Compd. Vol. 509 (2011), p.5581.

Google Scholar

[12] Y. F. Mo, Z. A. Tian, R. S. Liu, Z. Y. Hou and C. C. Wang: J. Non-Cryst. Solids, Vol. 421 (2015), p.14.

Google Scholar

[13] A. A. Tseng, M. H. Lee, and B. Zhao: T. ASME, Vol. 123 (2011), p.74.

Google Scholar

[14] S. Masuda, K. Takagi, W. Dong, K. Yamanaka and A. Kawasaki: J. Cryst. Growth, Vol. 310 (2008), p.2915.

Google Scholar

[15] Y. Hu, W. Yue, J. Li, W. Dong, C. Li, B. Ma, C. liu and J. Han: J. Mater. Res, Vol. 33(2018), p.2835.

Google Scholar

[16] B. Zhao, W. Dong, H, Ji, Q. Zhang, M. Wu, Q. Zhai and Y. Gao: MRS. Commun, Vol. 7 (2017), p.709.

Google Scholar

[17] N. Yan, W. L. Wang, and B. Wei: J. Alloys. Compd Vol. 558 (2013), p.109.

Google Scholar

[18] D. M. Anderson, M. G. Worster and S. H. Davis: J. Cryst. Growth, Vol. 163 (1996), p.329.

Google Scholar

[19] J. Xu, M. Xiang, B. Dang and Z. Jian: Comp. Mater. Sci, Vol. 128 (2017), p.98.

Google Scholar

[20] L. Gong, B. Chen, L, Zhang, Y. Ma and K. Liu: J. Mater. Sci. Technol, Vol. 957 (2017), p.1.

Google Scholar

[21] Y. Guo, L. Jia, B. Kong, S. Zhang, F. Zhang and H. Zhang: Appl. Surf. Sci, Vol. 409 (2017), p.367.

Google Scholar

[22] H. Ji, Q. Wang, M. Li and C. Wang: J. Mater. Process. Tech, Vol. 214 (2014), p.13.

Google Scholar

[23] N. Yodoshi, R. Yamada, A. Kawasaki and A. Makino: J. Alloys. Compd Vol. 643(2015), p.2.

Google Scholar

[24] L. Sang, Y. Xu, P. Fang, H. Zhang, Y. Cai and X. Liu: Vacuum. Vol 157 (2018), p.354.

Google Scholar

[25] P. Fang, Y. Xu, X. Li and C. Ya: Rare. Metal. Mat. Eng. Vol. 47 (2018), p.423.

Google Scholar

[26] A. Khan, M. Baig, and A. Almajid: IJMMM. Vol. 6 (2018), p.369.

Google Scholar

[27] C. Lei, H. Huang, Y. Huang, Z. Cheng, S. Tang and Y. Du: Powder. Technol. Vol. 301 (2016), p.356.

Google Scholar

[28] R. Sangsawang, T. Matum, and U. Nontakaew: IJMMM. Vol. 4 (2016), p.131.

Google Scholar