[1]
García, J.M.; García, F.C.; Serna, F.; Peña, J.L.D.L. High-performance aromatic polyamides [J]. Progress in Polymer Science, 35 (2010), 623-686.
DOI: 10.1016/j.progpolymsci.2009.09.002
Google Scholar
[2]
Chen, X.; Wang, W.; Jiao, C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer [J]. Journal of Hazardous Materials, 331 (2017), 257-264.
DOI: 10.1016/j.jhazmat.2017.02.011
Google Scholar
[3]
Zheng, Y.; Ying, S.; Li, J.; Liu, L.; Li, C.; Liu, J.; Tian, S. Tensile response of carbon-aramid hybrid 3D braided composites [J]. Materials & Design, 116 (2017), 246-252.
DOI: 10.1016/j.matdes.2016.11.082
Google Scholar
[4]
Zhu, X.L.; Yuan, L.; Liang, G.Z.; Gu, A.J. Unique Uv-resistant and surface active aramid fibers with simultaneously enhanced mechanical and thermal properties by chemically coating Ce0.8Ca0.2O1.8 having low photocatalytic activity [J]. Journal of Materials Chemistry A, 2 (2014), 11286-11298.
DOI: 10.1039/c4ta02060j
Google Scholar
[5]
Cheng, Z.; Hong, D.W.; Dai, Y.; Jiang, C.; Meng, C.B.; Luo, L.B.; Liu, X.Y. Highly improved Uv resistance and composite interfacial properties of aramid fiber via iron (III) coordination [J]. Applied Surface Science, 434 (2018), 473-480.
DOI: 10.1016/j.apsusc.2017.10.227
Google Scholar
[6]
None. Industry News: Us Textile Processing and Finishing Chemicals Demand To Reach 2.6 Billion in 2004 [J]. Journal of Industrial Textiles, 30 (2000), 101-102.
DOI: 10.1177/152808370003000202
Google Scholar
[7]
Kong, H.; Ding, H.; Yu, M.; Ding, X.; Qiao, M. Influence of poly(p-phenyleneterephalamide) pulp by surface modification with dopamine to nitrile butadiene rubber [J]. Polymer Composites, 40 (2018), 476-483.
DOI: 10.1002/pc.24768
Google Scholar
[8]
Zhi, L.; Gong, L.; Li, C.; Pan, Y.; Huang, Y.; Cheng, X. Silica aerogel/aramid pulp composites with improved mechanical and thermal properties [J]. Journal of Non-Crystalline Solids, 454 (2016), 1-7.
DOI: 10.1016/j.jnoncrysol.2016.10.015
Google Scholar
[9]
Wei, D.W.; Yan, H.Z.; Li, Q.Z. Reinforcing Mechanism of Novel Aramid Pulp Short Fibre in Chloroprene Rubber Matrix [J]. Advanced Materials Research, 11 (2006), 513-516.
DOI: 10.4028/www.scientific.net/amr.11-12.513
Google Scholar
[10]
Li, W.; Huang, J.; Jie, F.; Liang, Z.; Cao, L.; Yao, C. Effect of aramid pulp on improving mechanical and wet tribological properties of carbon fabric/phenolic composites [J]. Tribology International, 104 (2016), 237-246.
DOI: 10.1016/j.triboint.2016.09.005
Google Scholar
[11]
WU; CHENG; X., H. The tribological properties of Kevlar pulp reinforced epoxy composites under dry sliding and water lubricated condition [J]. Wear, 261 (2006), 1293-1297.
DOI: 10.1016/j.wear.2006.03.014
Google Scholar
[12]
Faramarzi, I.; Razzaghi-Kashani, M. Improvements in tribological properties of polyamide 6 by application of aramid pulp [J]. Iranian Polymer Journal, 24 (2015), 1-7.
DOI: 10.1007/s13726-015-0326-3
Google Scholar
[13]
Bolvari, A.; Glenn, S.; Janssen, R.; Ellis, C. Wear and friction of aramid fiber and polytetrafluoroethylene filled composites [J]. Wear, 204 (1997), 697-702.
DOI: 10.1016/s0043-1648(96)07446-7
Google Scholar
[14]
Kim, S.J.; Jang, H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp [J]. Tribology International, 33 (2000), 477-484.
DOI: 10.1016/s0301-679x(00)00087-6
Google Scholar
[15]
Gopal, P.; Dharani, L.R.; Blum, F.D. Hybrid phenolic friction composites containing Kevlar®; pulp Part 1. Enhancement of friction and wear performance [J]. Wear, 193 (1996), 199-206.
DOI: 10.1016/0043-1648(95)06723-x
Google Scholar