Characteristic Enhancement of InGaN-Based Light Emitting Diodes Grown on Pattern Sapphire Substrates

Article Preview

Abstract:

Blue light-emitting diodes (LEDs) with an InGaN multi-quantum well (MQW) structure were fabricated on cone-shaped patterned sapphire substrate (PSS) using a single growth process of metal organic chemical vapor deposition (MOCVD). The PSS was proved to be an efficient method to decrease the threading dislocation (TD) density in GaN epifilm with the lateral growth mode on PSS. The LED designed on PSS increased the electroluminescene (EL) intensity. The internal quantum efficiency is increased by reducing the dislocation density, and light extraction efficiency is also enhanced owing to PSS.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-103

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Kukai: Jpn. J. Appl. Phys. Vol. 37 (1998), p. L479.

Google Scholar

[2] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, T. Jyouichi: Physica Status Solidi Vol. 188 (2001), p.121.

DOI: 10.1002/1521-396x(200111)188:1<121::aid-pssa121>3.0.co;2-g

Google Scholar

[3] H. C. Jeon, C. J. Rark, H. Y. Cho, T.W. Kang, T. W. Kim, J. E. Oh and J. H. Na: J. Korean Phys. Soc. Vol. 47 (2005), p. S489.

Google Scholar

[4] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis: Appl. Phys. Lett. Vol. 71 (1997), p.2472.

Google Scholar

[5] D. M. Follstaedt, P. P. Provencio, N. A. Missert, C. C. Mitchell, D. D. Koleske, A. A. Allerma, and C. I. H. Ashby: Appl. Phys. Lett. Vol. 81 (2002), p.2758.

DOI: 10.1063/1.1511286

Google Scholar

[6] M. H. Lo, P. M. Tu, C. H. Wang, Y. J. Cheng, C. W. Hung, S. C. Hsu, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and C. M. Liu: Appl. Phys. Lett. Vol. 95 (2009), p.211103.

DOI: 10.1063/1.3266859

Google Scholar

[7] A. Sakai, H. Sunakawa, and A. Usui: Appl. Phys. Lett. Vol. 71 (1997), p.2259.

Google Scholar

[8] J. M. Bethoux, P. Vennegues, F. Natali, E. Feltin, O. Tottereau, G. Nataf, P. De Mierry, and F. Semond: J. Appl. Phys. Vol. 94 (2003), p.6499.

DOI: 10.1063/1.1622993

Google Scholar

[9] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang: IEEE Photon. Technol. Lett. Vol. 18 (2006), p.1152.

Google Scholar

[10] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano and T. Mukai: Jpn J Appl Phys. Vol. 41 (2002), p. L1431.

DOI: 10.1143/jjap.41.l1431

Google Scholar

[11] Y. P. Hsu, S. J. Chang, Y. K. Su: J Cryst Growth Vol. 261 (2004), p.466.

Google Scholar

[12] J. H. Lee, J. T. Oh, J. S. Park, J. W. Kim, Y. C. Kim, J. W. Lee and H. K. Cho: Phys. Status Solidi (c) Vol. 3 (2006), p.2169.

Google Scholar

[13] J. H. Lee, J. T. Oh, I. S. Choi and Y. C. Kim: J. Korean Phys. Soc. Vol. 51 (2007), p. S249.

Google Scholar

[14] J. C. Song, S. H. Lee, I. H. Lee, K. W. Seol, and C. R. Lee: Journal of Crystal Growth Vol. 308 (2007), p.321.

Google Scholar

[15] S. M. Jeonga, S, Kissinger, D. W. Kim, S. J. Lee, J. S. Kim, H. K. Ahn and C. R. Lee: Journal of Crystal Growth Vol. 312 (2010), p.258.

Google Scholar