A Finite Element Model for Temperature Prediction in Laser-Assisted Milling of AerMet100 Steel

Article Preview

Abstract:

Laser-assisted milling (LAM) represents an innovative process to enhance productivity in comparison with conventional milling. The workpiece temperature in LAM not only affects the cutting performance of materials, but also the machined surface quality of the part. This paper presents a 3D transient finite element (FE) model for workpiece temperature prediction in LAM. A moving Gaussian laser heat source model is implemented as a user-defined subroutine and linked to ABAQUS. The thermal model is validated by machining AerMet100 steel under different process parameters (laser power, spindle speed and feed per tooth). Good agreement between predicted and measured workpiece temperatures indicates that the FE model is feasible. In addition, the effects of laser spot size and incident angle on workpiece temperature are analyzed based on the proposed model. This work can be further applied to optimize process parameters for controlling the machined surface quality in LAM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

130-138

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zeng, R. Yan, P. Du, M. Zhang, F. Peng, Notch wear prediction model in high speed milling of AerMet100 steel with bull-nose tool considering the influence of stress concentration, Wear 408-409 (2018) 228-237.

DOI: 10.1016/j.wear.2018.05.024

Google Scholar

[2] R. Wiedenmann, M.F. Zaeh, Laser-assisted milling—Process modeling and experimental validation, CIRP J. Manuf. Sci. Technol. 8 (2015) 70-77.

DOI: 10.1016/j.cirpj.2014.08.003

Google Scholar

[3] S. Sun, M. Brandt, J.E. Barnes, M.S. Dargusch, Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 225 (9) (2011) 1512-1527.

DOI: 10.1177/0954405411411608

Google Scholar

[4] M.J. Bermingham, D. Kent, M.S. Dargusch, A new understanding of the wear processes during laser assisted milling 17-4 precipitation hardened stainless steel, Wear 328 (2015) 518-530.

DOI: 10.1016/j.wear.2015.03.025

Google Scholar

[5] J. Yang, S. Sun, M. Brandt, W. Yan, Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy, J. Mater. Process. Technol. 210 (15) (2010) 2215-2222.

DOI: 10.1016/j.jmatprotec.2010.08.007

Google Scholar

[6] Y. Tian, B. Wu, M. Anderson, Y.C. Shin, Laser-assisted milling of silicon nitride ceramics and Inconel 718, ASME J. Manuf. Sci. Eng. 130 (3) (2008) 031013.

DOI: 10.1115/1.2927447

Google Scholar

[7] X. Shen, S. Lei, Thermal modeling and experimental investigation for laser assisted milling of silicon nitride ceramics, ASME J. Manuf. Sci. Eng. 131 (5) (2009) 051007.

DOI: 10.1115/1.3184086

Google Scholar

[8] H. Ding, N. Shen, Y.C. Shin, Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys, J. Mater. Process. Technol. 212 (3) (2012) 601-613.

DOI: 10.1016/j.jmatprotec.2011.07.016

Google Scholar

[9] R. Wiedenmann, M. Langhorst, M.F. Zaeh, Computerized optimization of the process parameters in laser-assisted milling, Phys. Procedia 12 (2011) 607-616.

DOI: 10.1016/j.phpro.2011.03.077

Google Scholar

[10] W.S. Woo, C.M. Lee, A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling, Appl. Therm. Eng. 91 (2015) 33-42.

DOI: 10.1016/j.applthermaleng.2015.08.006

Google Scholar

[11] Z. Pan, Y. Feng, T.P. Hung, Y.C. Jiang, F.C. Hsu, L.T. Wu, C.F. Lin, Y.C. Lu, S.Y. Liang, Heat affected zone in the laser-assisted milling of Inconel 718, J. Manuf. Process. 30 (2017) 141-147.

DOI: 10.1016/j.jmapro.2017.09.021

Google Scholar

[12] G.K. Hedberg, Y.C. Shin, Laser Assisted Milling of Ti-6Al-4V ELI with the Analysis of Surface Integrity and its Economics, Lasers Manuf. Mater. Process. 2 (3) (2015) 164-185.

DOI: 10.1007/s40516-015-0013-4

Google Scholar

[13] M.F. Zaeh, R. Wiedenmann, R. Daub, A thermal simulation model for laser-assisted milling, Phys. Procedia 5 (2010) 353-362.

DOI: 10.1016/j.phpro.2010.08.062

Google Scholar

[14] F. Tagliaferri, G. Leopardi, U. Semmler, M. Kuhl, B. Palumbo, Study of the influences of laser parameters on laser assisted machining processes, Procedia CIRP 8 (2013) 170-175.

DOI: 10.1016/j.procir.2013.06.084

Google Scholar