Gamma-Irradiation of E-Glass/Epoxy Composite: A Study of its Mechanical and Thermal Sustainability

Article Preview

Abstract:

Glass fibre reinforced epoxy (GRE) composites, used as mechanical support and thermal insulators for superconducting magnets of fusion reactors, have been exposed to gamma irradiations at both higher and lower order ranges of doses. Hand layed E-glass fibre/epoxy composite samples, exposed to gamma-irradiations of cumulative doses of both low strength (10, 20, 30, 40, 50 and 60 kGy) and high strength (0.5, 2.5, 6.5, 8.5 and 10.5 MGy) reveal a huge lowering of the ILSS (inter laminar shear strength) for its exposure to low strength dose irradiation. However, improved ILSS values are recorded for high dose exposures. At both high and low doses of exposure to irradiation the Tg (glass transition temperature) got improved initially with a decreasing trend towards the later stages of exposures. Thermo-gravimetric analysis (TGA) test reveals lowest initial decomposition temperature (IDT) for the composite sample irradiated to maximum dose (10.5 MGy). Activation energy () values of gamma-irradiated composite samples for thermal decomposition were found less compared to that for as-cured composite. FTIR spectra of irradiated samples reveal formation of oligomers confirming the trend of activation energy of irradiated composite. FESEM fractographs of the irradiated composite fracture samples reveal several modes of failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

296-303

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. S. Brown, Radiation effects in Superconducting Fusion magnet materials, J. Nucl. Mat. 97(1981) 1-14.

Google Scholar

[2] S. Beura, D. N. Thatoi, A. P. Chakraverty, U. K. Mohanty, Impact of the ambiance on GFRP composites and role of some inherent factors: A review report, J. Reinf. Plast Compos. 37 (2018) 533-547.

DOI: 10.1177/0731684418754359

Google Scholar

[3] J. L. Scott, F. W. Jr. Clinard, F. W. Wiffen, Special purpose materials for fusion application, J. Nucl. Mat. 133-134 (1985) 156-163.

DOI: 10.1016/0022-3115(85)90126-6

Google Scholar

[4] Y. Zhai, P. Titus, C. Kessel, L. El-Guebaly, Conceptual magnet design study for fusion nuclear science facility, Fusion Eng. Des. 135 (2018) 324-336.

DOI: 10.1016/j.fusengdes.2017.06.028

Google Scholar

[5] J. Megusar, Low temperature fast-neutron and gamma-irradiation of glass fibre-epoxy composite: Part 2: Structure and ChemistrY, J. Nucl. Mat. 230 (1996) 233-241.

DOI: 10.1016/0022-3115(96)80019-5

Google Scholar

[6] Z. Wu, J. W. Li, C. J. Huang, R. J. Huang, L. F. Li, Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite, J. Nucl. Mat. 441 (2013) 67-72.

DOI: 10.1016/j.jnucmat.2013.05.041

Google Scholar

[7] H. Kaouacha, F. Hosnib, M. Daoudia, A. Bardaouia, K. Farahbc, H. Hamzaouid, R. Chtourou, Effects of gamma irradiation on photoluminescence and activation energy of epoxy resin, Superlattices Microstruct. 55 (2013) 191-197.

DOI: 10.1016/j.spmi.2012.10.015

Google Scholar

[8] J. M. Pintado, J. Miguel, Effects of - radiation on Mechanical behaviour Carbon/Epoxy Composite Materials, Cryogenics. 38 (1998) 85-89.

DOI: 10.1016/s0011-2275(97)00115-x

Google Scholar

[9] L. Xing, L. Liu, Y. Huang, D. Jiang, B. Jiang, J. He, Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation, Composites Part B. 69 (2015) 50-57.

DOI: 10.1016/j.compositesb.2014.09.027

Google Scholar

[10] S. Tiwari, J. Bijwe, S. Panier, Gamma radiation treatment of carbon fabric to improve the fiber–matrix adhesion and tribo-performance of composites, Wear. 271 (2011) 2184-2192.

DOI: 10.1016/j.wear.2010.11.032

Google Scholar

[11] S. Egusa, T. Seguchi, Polymer composites as magnet materials: Irradiation effects and degradation mechanism of mechanical properties, J. Nucl. Mat. 179-181 (1991) 1111-1119.

DOI: 10.1016/0022-3115(91)90286-g

Google Scholar

[12] A. P. Chakraverty, U. K. Mohanty, S. C. Mishra, A. Satapathy, Sea Water Ageing of GFRP Composites and the Dissolved salts, IOP Conf. Series: Mat. Sc. & Engg. 75 (2015) 012029.

DOI: 10.1088/1757-899x/75/1/012029

Google Scholar

[13] A. P. Chakraverty, U. K. Mohanty, B. B. Biswal, Thermal shock behavior of hydrothermally conditioned e-glass fi ber/epoxy composites, Emer. Mat. Res. 1 (2012) 263-270.

DOI: 10.1680/emr.12.00009

Google Scholar

[14] A. Broido, A simple, sensitive Graphical Method of Treating Thermogravimetric Analysis Data, J. Polym. Sci. Part-2. 7 (1969) 1761-1773.

DOI: 10.1002/pol.1969.160071012

Google Scholar

[15] E. N. Hoffman, T. E. Skidmore, Radiation effects on epoxy/carbon-fiber composite, J. Nucl. Mat. 392 (2009) 371-378.

DOI: 10.1016/j.jnucmat.2009.03.027

Google Scholar

[16] Y. Gao, S. Jiang, D. Yang, S. He, J. Xiao, Z. Li, A study on radiation effect of < 200 keV protons on M40J/epoxy composites, Nuclear Instruments and Methods in Physics Research Section B. 229 (2005) 261-268.

DOI: 10.1016/j.nimb.2004.11.030

Google Scholar

[17] H. Harayma, M. Al-Sheikhly, J. Silverman, Oligomer formation in the radiation induced polymerization of styrene, Radiat. Phys. Chem. 68 (2003) 1023-1029.

DOI: 10.1016/j.radphyschem.2003.06.001

Google Scholar

[18] N. Longiéras, M. Sebban, P. Palmas, A. Rivaton, J. L. Gardette, Degradation of epoxy resins under high energy electron beam irradiation: Radio-oxidation, Polym. Degrad. Stab. 92 (2007) 2190-2197.

DOI: 10.1016/j.polymdegradstab.2007.01.035

Google Scholar